Dimensionality Reduction thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Chapter list

Session 1: Motivation and Linear Models00:00
Introduction to Learning with Probabilities00:00
Outline00:39
ML Motivation00:47
What is Machine Learning?00:48
Outline01:18
Notation02:03
Online Resources03:22
High Dimensional Data03:27
Applications of Machine Learning05:15
History of Machine Learning (personal)05:20
Frank Rosenblatt's Perceptron06:46
Mixtures of Gaussians - 107:01
Mixtures of Gaussians - 207:29
Vladmir Vapnik's Statistical Learning Theory07:43
Thinking in High Dimensions09:39
The Gaussian Egg - 110:54
Personal View11:19
Machine Learning Today (1)12:13
The Gaussian Egg - 212:49
The Gaussian Egg - 313:29
Mathematics - 113:54
Mathematics - 215:09
Mathematics - 316:08
Machine Learning Today (2)16:18
Mathematics - 517:29
Where is the Mass?18:21
Looking at Gaussian Samples19:02
Statistics (1)20:58
Interpoint Distances21:41
Central Limit Theorem and Non-Gaussian Case23:54
Early 20th Century Statistics24:58
Statistics (2)25:23
Machine Learning and Probability25:32
Summary25:36
Sanity Check - 126:10
Sanity Check - 226:44
Oil Data - 126:55
Oil Data - 227:05
Oil Data - 328:38
Stick Man Data29:13
Probability: A Framework to Characterise Uncertainty29:27
Richard Price29:34
Stick Man30:02
Microarray Data - 130:27
Laplace30:42
Microarray Data - 230:53
Grid Corpus Vowels - 131:08
Grid Corpus Vowels - 231:10
Where does practice depart from our theory?31:17
1000-D Gaussian - 131:46
1000-D Gaussian - 232:33
Classi cation32:57
Classi cation Examples33:23
The Perceptron33:33
Perceptron-like Algorithm34:10
Linear Probabilistic Dimensionality Reduction36:24
Notation37:51
Perceptron Algorithm (1)38:05
Reading Notation38:19
Perceptron Algorithm (2)38:25
Perceptron Algorithm (3)38:39
Linear Dimensionality Reduction 38:46
Perceptron Algorithm (4)38:52
Perceptron Algorithm (5)38:56
Perceptron Algorithm (6)38:59
Perceptron Algorithm (7)39:02
Perceptron Algorithm (8)39:08
Linear Latent Variable Model - 139:09
Regression Examples40:14
Regression Examples40:24
Updating Bias/Intercept40:46
Updating Slope41:01
Linear Regression Example (1)41:04
Linear Regression Example (2)41:07
Linear Regression Example (3)41:07
Linear Regression Example (4)41:08
Linear Regression Example (5)41:08
Linear Regression Example (6)41:09
Linear Regression Example (7)41:10
Linear Regression Example (8)41:10
Linear Regression Example (9)41:11
Linear Regression Example (10)41:11
Linear Regression Example (11)41:12
Linear Regression Example (12)41:13
Linear Regression Example (13)41:13
Linear Regression Example (14)41:14
Linear Regression Example (15)41:14
Linear Regression Example (16)41:15
Linear Regression Example (17)41:15
Linear Regression Example (18)41:16
Linear Regression Example (19)41:17
Linear Regression Example (20)41:17
Linear Regression Example (21)41:18
Linear Regression Example (22)41:19
Linear Regression Example (23)41:19
Linear Regression Example (24)41:20
Linear Regression Example (25)41:20
Linear Regression Example (26)41:21
Linear Regression Example (27)41:22
Linear Regression Example (28)41:22
Linear Regression Example (29)41:23
Linear Regression Example (30)41:23
Linear Regression Example (31)41:24
Linear Regression Example (32)41:25
Basis Functions41:32
Quadratic Basis (2)41:34
Linear Latent Variable Model - 242:08
Quadratic Basis (1)42:19
Quadratic Basis (3)42:22
Functions Derived from Quadratic Basis (1)42:27
Linear Latent Variable Model - 342:41
Linear Latent Variable Model - 443:11
Linear Latent Variable Model - 543:50
Functions Derived from Quadratic Basis (2)43:57
Functions Derived from Quadratic Basis (3)44:07
Probabilistic PCA Solution - 144:16
Radial Basis Functions (1)44:18
Probabilistic PCA Solution - 244:24
Radial Basis Functions (2)44:32
Radial Basis Functions (3)44:34
Functions Derived from Radial Basis (1)44:57
Functions Derived from Radial Basis (2)45:16
Functions Derived from Radial Basis (3)45:17
Nonlinear Regression Example (1)45:27
Nonlinear Regression Example (2)45:37
Nonlinear Regression Example (3)45:41
Nonlinear Regression Example (4)45:41
Nonlinear Regression Example (5)45:43
Nonlinear Regression Example (6)45:59
Nonlinear Regression Example (7)46:00
Nonlinear Regression Example (8)46:01
Nonlinear Regression Example (9)46:02
Nonlinear Regression Example (10)46:03
Nonlinear Regression Example (11)46:04
Nonlinear Regression Example (12)46:05
Nonlinear Regression Example (13)46:06
Nonlinear Regression Example (14)46:07
Nonlinear Regression Example (15)46:08
Nonlinear Regression Example (16)46:09
Nonlinear Regression Example (17)46:10
Nonlinear Regression Example (18)46:11
Nonlinear Regression Example (19)46:12
Nonlinear Regression Example (20)46:13
Nonlinear Regression Example (21)46:13
Nonlinear Regression Example (22)46:14
Nonlinear Regression Example (23)46:15
Nonlinear Regression Example (24)46:16
Nonlinear Regression Example (25)46:17
Nonlinear Regression Example (26)46:18
Nonlinear Regression Example (27)46:19
Nonlinear Regression Example (28)46:20
Nonlinear Regression Example (29)46:21
Nonlinear Regression Example (30)46:21
Nonlinear Regression Example (31)46:22
Nonlinear Regression Example (32)46:23
Nonlinear Regression Example (33)46:24
Nonlinear Regression Example (34)46:25
Nonlinear Regression Example (35)46:26
Nonlinear Regression Example (36)46:27
Nonlinear Regression Example (37)46:28
Nonlinear Regression Example (38)46:28
Nonlinear Regression Example (39)46:29
Nonlinear Regression Example (40)46:30
Nonlinear Regression Example (41)46:31
Nonlinear Regression Example (42)46:32
Nonlinear Regression Example (43)46:33
Nonlinear Regression Example (44)46:34
Nonlinear Regression Example (45)46:35
Mathematical Interpretation (1)46:35
Mathematical Interpretation (2)48:30
Learning is Optimization (1)49:13
Learning is Optimization (2)49:16
Minimization via Gradient Descent49:45
Steepest Descent (1)50:00
Steepest Descent (2)50:04
Steepest Descent (3)50:05
Steepest Descent (4)50:06
Steepest Descent (5)50:14
Steepest Descent (6)50:15
Steepest Descent (7)50:16
Steepest Descent (8)50:17
Steepest Descent (9)50:18
Steepest Descent (10)50:19
Steepest Descent (11)50:20
Steepest Descent (12)50:20
Steepest Descent (13)50:25
Steepest Descent (14)50:26
Steepest Descent (15)50:27
Steepest Descent (16)50:28
Steepest Descent (17)50:29
Steepest Descent (18)50:29
Steepest Descent (19)50:30
Steepest Descent (20)50:31
Steepest Descent (21)50:32
Steepest Descent (22)50:41
Stochastic Gradient Descent (1)50:42
Stochastic Gradient Descent (2)51:41
Stochastic Gradient Descent (3)52:01
Stochastic Gradient Descent (4)52:14
Stochastic Gradient Descent (5)52:18
Stochastic Gradient Descent (6)52:23
Stochastic Gradient Descent (7)53:12
Stochastic Gradient Descent (8)53:15
Stochastic Gradient Descent (9)53:26
Stochastic Gradient Descent (10)53:27
Stochastic Gradient Descent (11)53:28
Stochastic Gradient Descent (12)53:29
Stochastic Gradient Descent (13)53:30
Stochastic Gradient Descent (14)53:30
Stochastic Gradient Descent (15)53:31
Stochastic Gradient Descent (16)53:32
Stochastic Gradient Descent (17)53:33
Stochastic Gradient Descent (18)53:33
Stochastic Gradient Descent (19)53:34
Stochastic Gradient Descent (20)53:35
Stochastic Gradient Descent (21)53:36
Stochastic Gradient Descent (22)53:37
Stochastic Gradient Descent (23)53:37
Stochastic Gradient Descent (24)53:38
Stochastic Gradient Descent (25)53:39
Stochastic Gradient Descent (26)53:40
Stochastic Gradient Descent (27)53:41
Stochastic Gradient Descent (28)53:44
Stochastic Gradient Descent (29)53:45
Stochastic Gradient Descent (30)53:46
Stochastic Gradient Descent (31)53:46
Stochastic Gradient Descent (32)53:47
Stochastic Gradient Descent (33)53:48
Stochastic Gradient Descent (34)53:57
Stochastic Gradient Descent (35)53:58
Stochastic Gradient Descent (36)53:58
Stochastic Gradient Descent (37)53:59
Stochastic Gradient Descent (38)53:59
Modern View of Error Functions55:19
PCA on Stick Man58:53
PCA on Oil Data59:54
PCA on Grid Vowels01:00:31
Important Concepts Not Covered01:00:55
Clustering01:01:12
PCA on Microarray01:01:41
K-means Clustering (1)01:01:52
Why Probabilistic PCA?01:02:21
Objective Function01:02:26
K-means Clustering (2)01:03:09
K-means Clustering (3)01:03:16
K-means Clustering (4)01:03:20
K-means Clustering (5)01:03:26
K-means Clustering (6)01:03:29
K-means Clustering (7)01:03:31
K-means Clustering (8)01:03:33
K-means Clustering (9)01:03:34
K-means Clustering (10)01:03:36
K-means Clustering (11)01:03:38
K-means Clustering (12)01:03:39
Oil and Missing Data - 101:04:27
Other Clustering Approaches01:04:30
Oil and Missing Data - 201:04:46
Oil and Missing Data - 301:04:48
Oil and Missing Data - 401:05:27
Linear Latent Variable Model - 101:05:36
Maximum Likelihood Regression01:06:36
Linear Latent Variable Model - 201:06:37
Independent Component Analysis Samples - 101:07:01
Independent Component Analysis Samples - 201:07:19
Independent Component Analysis Samples - 301:08:14