en-es
en-fr
en-sl
en
0.25
0.5
0.75
1.25
1.5
1.75
2
Neural Networks
Published on Jul 27, 201717530 Views
Related categories
Chapter list
Deep learning00:00
Neural network online course - 101:29
Neural network online course - 201:53
Deep learning - 101:57
Neural Networks - 102:23
Artificial neuron - 102:32
Deep learning - 202:44
Artificial neuron - 203:45
Deep learning - 304:08
Deep learning - 404:27
Capacity of neural network - 104:49
Deep learning - 505:45
Capacity of neural network - 205:55
Deep learning - 606:01
Capacity of neural network - 306:07
Capacity of neural network - 406:32
Deep learning - 706:33
Neural Networks - 207:58
Unsupervised pre-training - 108:00
Activation function - 109:56
Activation function - 210:32
Activation function - 310:49
Activation function - 411:19
Unsupervised pre-training - 211:19
Fine-tunung12:28
Deep learning - 914:00
Deep learning - 816:45
Autoencoder17:58
Deep learning - 1019:28
Dropout - 119:39
Dropout - 220:04
Flow graph - 120:08
Dropout - 320:29
Neural Networks - 321:11
Dropout - 422:20
Dropout - 523:09
Machine learning - 126:19
Machine learning - 227:30
Deep learning - 1128:58
Batch normalization - 130:04
Batch normalization - 233:06
Loss function35:00
Neural network online course41:57
Activation function - 542:14
Activation function - 642:53
Activation function - 743:10
Flow graph - 244:33
Regularization46:55
Initialization47:54
Backpropagation54:58
Model selection56:58
Knowing when to stop01:03:16
Other tricks of the trade - 101:11:42
Other tricks of the trade - 201:13:53
Other tricks of the trade - 301:15:44
Gradient checking01:28:24
Debugging on small dataset01:30:12