IntervalRank - Isotonic Regression with Listwise and Pairwise Constraints

author: Taesup Moon, Yahoo! Research Silicon Valley
published: Oct. 12, 2010,   recorded: February 2010,   views: 3912


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Ranking a set of retrieved documents according to their relevance to a given query has become a popular problem at the intersection of web search, machine learning, and information retrieval. Recent work on ranking focused on a number of different paradigms, namely, pointwise, pairwise, and list-wise approaches. Each of those paradigms focuses on a different aspect of the dataset while largely ignoring others. The current paper shows how a combination of them can lead to improved ranking performance and, moreover, how it can be implemented in log-linear time.

The basic idea of the algorithm is to use isotonic regression with adaptive bandwidth selection per relevance grade. This results in an implicitly-defined loss function which can be minimized efficiently by a subgradient descent procedure. Experimental results show that the resulting algorithm is competitive on both commercial search engine data and publicly available LETOR data sets.

See Also:

Download slides icon Download slides: wsdm2010_moon_irir_01.pdf (1.2┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: