Personalized Click Prediction in Sponsored Search

author: Haibin Cheng, Yahoo! Research Silicon Valley
published: April 12, 2010,   recorded: February 2010,   views: 4099
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Sponsored search is a multi-billion dollar business that generates most of the revenue for search engines. Predicting the probability that users click on ads is crucial to sponsored search because the prediction is used to influence ranking, filtering, placement, and pricing of ads. Ad ranking, filtering and placement have a direct impact on the user experience, as users expect the most useful ads to rank high and be placed in a prominent position on the page. Pricing impacts the advertisers’ return on their investment and revenue for the search engine. The objective of this paper is to present a framework for the personalization of click models in sponsored search. We develop user-specific and demographic-based features that reflect the click behavior of individuals and groups. The features are based on observations of search and click behaviors of a large number of users of a commercial search engine. We add these features to a baseline non-personalized click model and perform experiments on offline test sets derived from user logs as well as on live traffic. Our results demonstrate that the personalized models significantly improve the accuracy of click prediction.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: