An Optimization Framework for Query Recommendation

author: Carlos Castillo, EURECAT, Technology Centre of Catalonia
published: Oct. 12, 2010,   recorded: February 2010,   views: 100

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Query recommendation is an integral part of modern search engines. The goal of query recommendation is to facilitate users while searching for information. Query recommendation also allows users to explore concepts related to their information needs.

In this paper, we present a formal treatment of the problem of query recommendation. In our framework we model the querying behavior of users by a probabilistic reformulation graph, or query-flow graph [Boldi et al. CIKM 2008]. A sequence of queries submitted by a user can be seen as a path on this graph. Assigning score values to queries allows us to define suitable utility functions and to consider the expected utility achieved by a reformulation path on the query-flow graph. Providing recommendations can be seen as adding shortcuts in the query-flow graph that “nudge” the reformulation paths of users, in such a way that users are more likely to follow paths with larger expected utility.

We discuss in detail the most important questions that arise in the proposed framework. In particular, we provide examples of meaningful utility functions to optimize, we discuss how to estimate the effect of recommendations on the reformulation probabilities, we address the complexity of the optimization problems that we consider, we suggest efficient algorithmic solutions, and we validate our models and algorithms with extensive experimentation. Our techniques can be applied to other scenarios where user behavior can be modeled as a Markov process.

See Also:

Download slides icon Download slides: wsdm2010_castillo_apf_01.pdf (1.6 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: