Employing The Complete Face in AVSR to Recover from Facial Occlusions

author: Ben Hall, Department of Computer Science, University College London
published: Nov. 11, 2011,   recorded: October 2011,   views: 2883
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Existing Audio-Visual Speech Recognition (AVSR) systems visually focus intensely on a small region of the face, centred on the immediate mouth area. This is poor design for a variety reasons in real world situations because any occlusion to this small area renders all visual advantage null and void. This is poorby design because it is well known that humans use the complete face to speechread. We demonstrate a new application of a novel visual algorithm, the Multi-Channel Gradient Model, the deploys information from the complete face to perform AVSR. Our MCGM model performs near to the performance of Discrete Cosine Transforms in the case where a small region of interest around the lips, but in the case of an occluded face we can achieve results that match nearly 70% of the performance that DCTs can achieve on the DCT best case, lips centeric approach.

See Also:

Download slides icon Download slides: wapa2011_hall_occlusions_01.pdf (4.7┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: