Comparing classification methods for predicting distance students' performance

author: Diego Garcia-Saiz, University of Cantabria
published: Nov. 11, 2011,   recorded: October 2011,   views: 4376
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Virtual teaching is constantly growing and, with it, the necessity of instructors to predict the performance of their students. In response to this necessity, different machine learning techniques can be used. Although there are so many benchmarks comparing their performance and accuracy, there are still very few experiments carried out on educational datasets which have very special features which make them different from other datasets. Therefore, in this work we compare the performance and interpretation level of the output of the different classification techniques applied on educational datasets and propose a meta-algorithm to preprocess the datasets and improve the accuracy of the model, which will be used by virtual instructors for their decision making through the ElWM tool.

See Also:

Download slides icon Download slides: wapa2011_garcia_saiz_performance_01.pdf (229.2┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: