Utilizing Unlabeled Data for Classification-Prediction Learning

author: Shai Ben-David, David R. Cheriton School of Computer Science, University of Waterloo
published: Nov. 11, 2011,   recorded: October 2011,   views: 3717


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In many classi cation learning tasks, labeled data may be expensive or scarce. At the same time, unlabeled or \weakly labeled" samples, may be available in abundance. We consider three algorithmic paradigms that utilize unlabeled or \weakly labeled" samples to help classi cation tasks. On top of proposing some meta-algorithms for utilizing such samples, we analyse the sample complexity of these paradigms. We show that in some semi-supervised learning task, as well as in some domain adapta- tion and query learning tasks, unlabeled samples can be applied to provably achieve saving in the sizes of required labeled samples.

See Also:

Download slides icon Download slides: wapa2011_ben_david_unlabeled_01.pdf (305.6┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: