Context changes detection by one-class svms

author: Gaƫlle Loosli, National Institute of Applied Sciences
published: Feb. 25, 2007,   recorded: July 2005,   views: 5251
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

For a system that aims at taking into account the user, we need to consider that there are many different behaviors as well as many different users. Hence we need adaptative, unsupervised (or semi-supervised) learning methods. Our idea is to take advantage of wearable computers and wearable sensors (indeed their use is realistic at least for certain categories of people, such as pilots) to retrieve the current context of the user. Wearable sensors can be physiological (EMG, ECG, blood volume pressure...) or physical (accelerometers, microphone...). Contexts are depending on the application using the system and can be behaviors, affective states, combinations of these. Since this problem of context retrieval is very complex, we choose to detect changes at first place instead of labeling directly. Indeed this way we can apply unsupervised and fast methods which saves time for labeling (the labeling task is then applied only when changes are detected). Our interest lies in low level treatments and we present a non parametric change detection algorithm. This algorithm is meant to provide sequences of unlabeled contexts to be analyzed to higher level applications. Detection is made from signals given by non invasive sensors the user is wearing. Note that the methods presented here could as well be adapted to external sensors.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: