Graphical Models for Computer Vision
author: Pedro Felzenszwalb,
Computer Science Department, Brown University
recorded by: UAI2012 student volunteers
published: Sept. 17, 2012, recorded: August 2012, views: 9971
recorded by: UAI2012 student volunteers
published: Sept. 17, 2012, recorded: August 2012, views: 9971
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Graphical models provide a powerful framework for expressing and solving a variety of inference problems. The approach has had an enormous impact in computer vision. In this talk I will review some of the developments that have enabled this impact, focusing on efficient algorithms that exploit the structure of vision problems. I will discuss several applications including the low-level vision problem of image restoration, the mid-level problem of segmentation and the high-level problem of model-based recognition. I will also discuss some of the current challenges in the area.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: