Lecture 29: Shahs

author: Brad G. Osgood, Computer Science Department, Stanford University
published: May 21, 2010,   recorded: September 2007,   views: 2432
released under terms of: Creative Commons Attribution Non-Commercial (CC-BY-NC)

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


So it said this: it said the Fourier transform of F of AX – all right, so you change the variables X by a matrix A, a nonsingular matrix A – is one over the determinate of A times the Fourier transform of F evaluated at A inverse transpose at the frequency variable C. Okay? It’s a very interesting formula. We derived it last time, and it’s complicated. It’s more complicated than the one-dimensional stretch case, but it includes the one-dimensional stretch case, but what you don’t see in one dimensions is this new phenomenon as I say that reciprocal somehow means inverse transpose. ...

See the whole transcript at The Fourier Transform and its Applications - Lecture 29

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: