## Can diagrammatic reasoning be automated

published: Feb. 25, 2007, recorded: December 2002, views: 407

# Related content

# Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our**to describe your request and upload the data.**

__ticket system__*Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.*

# Description

Theorems in automated theorem proving are usually proved by formal logical proofs. However, there is a subset of problems which humans can prove by the use of geometric operations on diagrams, so called diagrammatic proofs. Insight is often more clearly perceived in these proofs than in the corresponding algebraic proofs; they capture an intuitive notion of truthfulness that humans find easy to see and understand.

We are investigating and automating such diagrammatic reasoning about mathematical theorems. Concrete, rather than general diagrams are used to prove particular concrete instances of the universally quantified theorem. The diagrammatic proof is captured by the use of geometric operations on the diagram. These operations are the "inference steps" of the proof.

An abstracted schematic proof of the universally quantified theorem is induced from these proof instances.

The constructive omega-rule provides the mathematical basis for this step from schematic proofs to theoremhood. In this way we avoid the difficulty of treating a general case in a diagram. One method of confirming that the abstraction of the schematic proof from the proof instances is sound is proving the correctness of schematic proofs in the meta-theory of diagrams.

These ideas have been implemented in the system, called DIAMOND, which is presented here.

# Link this page

Would you like to put a link to this lecture on your homepage?

Go ahead! Copy the HTML snippet !

## Write your own review or comment: