Interest-Based RDF Update Propagation

Kemele M. Endris, Sidra Faisal, Fabrizio Orlandi, Sören Auer, Simon Scerri

EIS - Enterprise Information Systems
University of Bonn & Fraunhofer IAIS
Motivation: Problems accessing remote SPARQL endpoints
Motivation: Problems accessing remote SPARQL endpoints

• Challenges:
 • Availability is not guaranteed
 • Low performance due to high load and traffic
 • Restriction on the query forms and number of results
Motivation: Problems accessing remote SPARQL endpoints

• Challenges:
 • Availability is not guaranteed
 • Low performance due to high load and traffic
 • Restriction on the query forms and number of results

• Possible solution:
 • Setup a local replica of source datasets
Motivation: Syncing using a naïve approach does not scale

• Setting up local replica:
 • Requires manual infrastructure setup and maintenance
 • Requires full data loading
 • Data Freshness not guaranteed

• Approach to sync with source (Naïve):
 1. Fully-loading releases of dataset dumps in intervals
 • Replace old versions of a dataset with new ones
 2. Continuous synchronization
 • Propagate all changes, including irrelevant ones
Definition: Changeset - Δ

- Delta of a dataset \mathcal{V} within two time points: t_1 and t_0 ($t_1 > t_0$)

$$\Delta(\mathcal{V}_{t_1}) = <\mathcal{D}_{t_1-t_0}, \mathcal{A}_{t_1-t_0}>$$

- Two components:
 - Set of removed triples
 $$\mathcal{D}_{t_1-t_0} = \mathcal{V}_{t_0} \setminus \mathcal{V}_{t_1}$$
 - Set of added triples
 $$\mathcal{A}_{t_1-t_0} = \mathcal{V}_{t_1} \setminus \mathcal{V}_{t_0}$$
Dataset Mirror Tool: Naïve approach

• A typical dataset mirror tool applies a changeset on a replica
 • It removes the set of deleted triples and insert the set of added triples
 • e.g., DBpedia Live Mirror tool

\[
\mathcal{V}_{t_1} = (\mathcal{V}_{t_0} \setminus D_{t_1-t_0}) \cup \mathcal{A}_{t_1-t_0}
\]

removed Triples:
- dbr:Marcel dbp:goals 1.
- dbr:Marcel dbo:team dbr:FNFT.
- dbr:Tim02 foaf:name "Tim Berners-Lee".
- dbr:Cristiano_Ronaldo dbo:goals 205.

added Triples:
- dbr:Cristiano_Ronaldo dbo:goals 230.
- dbr:Barack_Obama foaf:name "Barack Obama".
- dbr:Rio_Ferdinand foaf:Person.
- dbr:Rio_Ferdinand dbo:Athlete.
- dbr:Arvid_Smit foaf:Person.
- dbr:Arvid_Smit dbo:Athlete.

Our Approach: Interest-based update propagation

• Setup a slice (subset) of a dataset
• Interest-based update propagation
 • Interest expressions using SPARQL basic graph patterns
 • Interest expressions are evaluated on deltas (changesets) of the source dataset
 • Only triples that match interest expression shipped to the replica dataset

iRap: Interest-based RDF update propagation framework
Interest-based update propagation

Source

V_{t_1}

Changeset $\Delta(V_{t_1})$

$D_{t_1-t_0}$

$A_{t_1-t_0}$

Interest evaluation

Interest (i_g)

Candidate Generation

Candidate Assertion

Candidate Generation

Candidate Assertion

Potentially Interesting dataset

Potentially interesting changeset $\Delta(p_{t_1})$

Interesting Changeset $\Delta(\tau_{t_1})$

$\tau_{t_1-t_0} \cup \tau'_{t_1-t_0}$

$\alpha_{t_1-t_0}$

Replica τ_{t_0}

Interest expression

• Based on SPARQL graph pattern
 \(i_g = \langle \tau, b, op \rangle \)

• Composed of:
 • \(b \) - BGP – basic graph pattern
 • \(op \) - OGP – optional graph pattern
 • \(g \) - Source dataset URI – where changesets are downloaded from
 • \(\tau \) - Replica (target) dataset URI – where interesting changes are propagated to

CONSTRUCT WHERE {
 ?athlete a dbo:Athlete .
 OPTIONAL {
 }
}
Interest evaluation (1)

• Two steps:
 I. **Interest candidate generation**
 • Performs matching between the interest expression, i_g, and a changeset, $\Delta(V_{t1})$
 • Generates a set of candidate triples
 • e.g., `{ dbr:Cristiano_Ronaldo dbp:goals 205. }`
 II. **Interest candidate assertion**
 • Evaluates candidate triples combined with the interest query on the target dataset
 • e.g.,
         ```query
         SELECT * WHERE {
             ?a a dbo:Athlete .
             ?a dbp:goals ?goals.
         } VALUES (?a ?goals){ (dbr:Cristiano_Ronaldo 205) }
         ```
 • Performs matching between the *assertion* query with the *target* dataset
Interest evaluation (2)

- Execution of the two steps on a changeset results in a set of:
 - Interesting removed (and added) triples
 - Potentially removed (and added) interesting triples
 - Uninteresting triples
Remember?!

- A typical dataset mirror tool

\[\mathcal{V}_{t_1} = (\mathcal{V}_{t_0} \setminus \mathcal{D}_{t_1-t_0}) \cup \mathcal{A}_{t_1-t_0} \]

Removed Triples:
- `dbr:Marcel dbp:goals 1 .
- `dbr:Marcel dbo:team dbr:FNFT`.
- `dbr:Tim%02 foaf:name "Tim Berners-Lee" .
- `dbr:Cristiano_Ronaldo dbo:goals 205`.

Added Triples:
- `dbr:Cristiano_Ronaldo dbo:goals 230 .
- `dbr:Barack_Obama foaf:name "Barack Obama" .
- `dbr:Rio_Ferdinand a foaf:Person .
- `dbr:Rio_Ferdinand a dbo:Athlete .
- `dbr:Arvid_Smit a dbo:Athlete .

Remember?!

- A typical dataset mirror tool

\[V_{t_1} = (V_{t_0} \setminus D_{t_1 \rightarrow t_0}) \cup A_{t_1 \rightarrow t_0} \]

Removed Triples:
- `dbr:Marcel dbp:goals 1 .`
- `dbr:Marcel dbo:team dbr:FNFT .`
- `dbr:Tim%02 foaf:name "Tim Berners-Lee" .`
- `dbr:Cristiano_Ronaldo dbo:goals 205 .`

Added Triples:
- `dbr:Cristiano_Ronaldo dbo:goals 230 .`
- `dbr:Barack_Obama foaf:name "Barack Obama" .`
- `dbr:Rio_Ferdinand a foaf:Person .`
- `dbr:Rio_Ferdinand a dbo:Athlete .`
- `dbr:Arvid_Smit a dbo:Athlete .`

Interest query:

```
CONSTRUCT WHERE {
  ?athlete a dbo:Athlete .
  OPTIONAL {
  }
}
```

Interest-based update propagation

- Interesting Changeset $\Delta(\tau_{t_1})$:
 - Interesting removed triples
 - Interesting added triples

Interesting Removed Triples:

- dbr:Marcel dbp:goals 1.
- dbr:Cristiano_Ronaldo dbo:goals 205.

Interesting Added Triples:

- dbr:Cristiano_Ronaldo dbo:goals 230.
- dbr:Rio_Ferdinand a dbo:Athlete.

Athlete Dataset τ_{t_0}:

- dbr:Marcel a dbo:Athlete.
- dbr:Marcel dbp:goals 1.
- dbr:Cristiano_Ronaldo a dbo:Athlete.
- dbr:Cristiano_Ronaldo dbp:goals 205.
- dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com".

Interest-based update propagation

• Interesting Changeset Δ(τ_{t1}):
 • Interesting removed triples
 • Interesting added triples

• t1):
 • Potentially interesting removed triples
 • Potentially interesting added triples

Interesting Removed Triples:

dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo dbo:goals 205 .

Interesting Added Triples:

dbr:Cristiano_Ronaldo dbo:goals 230 .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 7 .

Potentially Interesting Triples:

dbr:Barack_Obama foaf:homepage "http://www.barackobama.com/".
dbr:Arvid_Smit a dbo:Athlete .
dbr:Marcel a dbo:Athlete .

Athlete Dataset τ_{t1}:

dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo dbo:goals 230 .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com".
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 7 .

iRap Framework

• Reference implementation of our approach
• Implemented using Java and Jena
• Open-source
 • http://eis.iai.uni-bonn.de/Projects/iRap
Experimental setting

• DBpedia 2014 – as a source dataset
 • 12,057 Changesets
 from Oct 01 – 15, 2014

• Two target datasets
 1) Football dataset
 • Slice of DBpedia: 265K triples
 2) Location dataset
 • Complete DBpedia 2014 dataset

• Two interest expressions:
 1) //Football dataset interest
 CONSTRUCT WHERE {
 ?footballer a dbo:SoccerPlayer .
 ?footballer foaf:name ?name .
 ?team rdfs:label ?teamName .
 }

 2) //Location dataset interest
 CONSTRUCT WHERE {
 ?location a ?type .
 ?location wgs:lat ?lat .
 OPTIONAL {
 ?location dcterms:subject ?subject
 }
 }

Results: Football dataset

Results: Football dataset

- Interesting triples:
 - 0.38% of the total removed triples
 - 0.34% of the total added triples
Results: Football dataset growth
Results: Location dataset
Results: Location dataset

- Interesting triples:
 - 4.38% of the total removed triples
 - 1.81% of the total added triples
Results: Location dataset growth

Conclusion

• A novel approach for interest-based RDF update propagation and detailed formalizations

• Our evaluation shows that our method can significantly cut down the size of the data updates

• Summary of results from 12,057 changesets of DBpedia 2014

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Interesting removed triples</th>
<th>Interesting added triples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football dataset</td>
<td>0.38%</td>
<td>0.34%</td>
</tr>
<tr>
<td>Location dataset</td>
<td>4.38%</td>
<td>1.81%</td>
</tr>
</tbody>
</table>
Thank you for your attention!

Questions?

• More on our Website: http://eis.iai.uni-bonn.de/Projects/iRap

• Contact:
 Google group: irap-ld@googlegroups.com
 Twitter: @KemeleM - @BadmotorF