A Multi-Scale Methodology for Explaining Data Streams

Luka Stopar, Marko Grobelnik, Dunja Mladenic
{luka.stopar,marko.grobelnik,dunja.mladenic}@ijs.si
Outline

• Introduction
• Implementation
• Use-cases
• Further work
Introduction

- Sensory systems typically operate in cycles with a continuously time-varying component
 - Aircraft in flight
 - Manufacturing systems
 - Weather

- Such systems can be characterized by a set of states along with state transitions
 - “Day” and “night” state
 - States according to an aircrafts roll
 - States with high and low productivity
Introduction

• Such high-level states can be further decomposed into lower-level states:
 – “Day” and “night” into “morning”, “midday”, “evening”, “midnight”
 – Aircrafts turn into 0° roll, 10° roll, 20° roll

• We propose a methodology for modeling such system and present its implementation

• We call our system StreamStory
Introduction - StreamStory

- StreamStory models the monitored system by:
 - Consuming multiple data streams and modeling them as a hierarchical Markovian process
 - Automatically learning the systems typical states and transitions
 - Aggregating states into a hierarchy to obtain a multi-resolution view

- Describing the underlying data and its dynamics in a qualitative manner
 - Helps to compensate the gap between low-level observations and high-level outputs/alerts

- By modelling transition it is able to predict future developments in the real-time data streams
• What if the pilot was to reduce the aircrafts speed during a banking turn?
• StreamStory splits the data streams into two sets of attributes

Observation set:
- Operators cannot directly manipulate: ambient temperature
- Cannot influence the systems dynamics
- Used to identify states

Control set:
- Attributes like injection pressure that the operator can adjust
- Influence the systems dynamics
- Used to model transitions

• StreamStory allows the user to observe the expected behavior of the system under a modified configuration
Outline

• Introduction
• Implementation
• Use-cases
• Further work
Implementation - Overview

• Take a set of data streams and join them so they are sampled at the same timestamps
• Resample the data streams
• Join the data streams into two sets of feature vectors
• Cluster the first set of feature vectors and use the clusters as states
• Generate a hierarchy of states
• Model state transitions based on the second set of feature vectors
 – Compute transitions for higher levels out of low level transitions online
Implementation

- **StreamStory** is implemented as a client-server application
 - Core functionality written in C++
 - External communication written in server-side JavaScript
 - Web-based user interface
- Each user can build several models
 - For exploration
 - For real-time application
StreamStory Architecture

Server

- Offline model store
 - Model 1
 - Model 2
 - Model N

- Online model store
 - Model 1
 - Model 2
 - Model N

- Data store
 - Data store 1
 - Data store 2
 - Data store N

User Interface

Online data store

- Store 1
- Store 2
- Store N

Merger

Data store

User Interface

Database

Data Source 1

Data Source 2

Data Source N
Model Architecture

Data Stream / Batch

JavaScript Wrapper

Observation Attributes

Feature Extractor 1
Feature Extractor 2
Feature Extractor N
Feature Space

Control Attributes

Feature Extractor 1
Feature Extractor 2
Feature Extractor M
Feature Space

Stream Modeler

State Identifier
Hierarchy Builder
Transition Modeler
State Assistant

User Interface

WebSocket

Req/Res
Stream Modeler

- The core component of the StreamStory system
- Delegates its tasks to four sub-components:
 - State Identifier
 - Hierarchy Builder
 - Transition Modeler
 - State Assistant
- Acts as a glue between different functionalities
State Identifier

• Responsible identification and construction of lowest-level states
 – State construction done by clustering the input streams
 – Uses DPMeans as the clustering algorithm
 – Stores statistics of each state for further use: visualization, anomaly detection
 – Computes 2D coordinates of each state: Multi-Dimensional Scaling (MDS)

• In online mode, the state identifier is responsible for:
 – Identification of the current lowest-level state
 – Anomaly detection: clustering based technique
Hierarchy Builder

- Once the lowest-level states are constructed, the hierarchy builder aggregates them into a hierarchy
 - Supports three agglomerative clustering strategies: single link, complete link and average link

- The hierarchy is encoded using 2 arrays:
 - Topology array
 - State level array
Hierarchy Builder – Finding Roots on Specific Height

- The topology array stores, at index i, the index of i-th’s parent
- To be able to model the Markov chain on a specific level, the hierarchy builder must determine which states are aggregated on that level
 - These aggregated states are stored into state sets S_i
 - State sets are computed using the following algorithm

1. $n \leftarrow$ total number of states
2. $S \leftarrow \{i \mid i \text{ resides on height } l\}, h \leftarrow$ array encoding the topology
3. repeat:
 1. for $i = 1, \ldots, n$ do
 1. if $h_i \notin S \land h_i \neq h_{h_i}$ do $h_i \leftarrow h_{h_i}$
4. while elements of h change

$$S_1, S_2$$
Transition Modeler

- Models transitions between states
 - Using a continuous-time Markov chain framework
- Determines:
 - Size of each state: stationary distribution π_i
 - Average staying time: $t_{avg} = \frac{1}{-q_{ii}}$
 - Transition probabilities: $p_{ij} = \frac{q_{ij}}{-q_{ii}}$
- Given states aggregated into state sets $\{S_i\}_{i=1}^n$ computes the aggregated Markov chain using the following formula:
 - Preserves the stationary distribution π

$$q_{S_iS_j} = \frac{\sum_{k \in S_i} \pi_k \sum_{l \in S_j} q_{kl}}{\sum_{k \in S_i} \pi_k}$$
Transition Modeler – Modelling Transitions

- Attributes in the control set influence state transitions
- Transition probabilities are estimated using logistic regression models
 \[p_{ij}(\Delta t) = \left(1 + e^{-\beta_{(ij)}x_k}\right)^{-1} \]
- Transition rates are calculated from probabilities
 \[q_{ij} = \frac{p_{ij}}{\Delta t} \]

| state: | time |\| 1\| 1\| 2\| \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rpm</td>
<td>[33.3]</td>
<td>[40.1]</td>
<td>[52.3]</td>
</tr>
<tr>
<td>class trans.1</td>
<td>[1]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
<tr>
<td>rpm</td>
<td>[33.3]</td>
<td>[40.1]</td>
<td>[52.3]</td>
</tr>
<tr>
<td>class trans.2</td>
<td>[0]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td>rpm</td>
<td>[33.3]</td>
<td>[40.1]</td>
<td>[52.3]</td>
</tr>
<tr>
<td>class trans 3</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
</tr>
</tbody>
</table>
State Assistant

- Responsible for assisting users in identifying the meaning of states
 - Highlights attributes that are specific for that state
 - Achieved by extracting weights from a logistic regression model
 - On every height we classify instances of one state against the instances of all other states
 - Random sampling to balance the datasets
User Interface

• Web-based
 – HTML + JavaScript

• Consists of 4 panels
 – Visualization panel
 – State Details panel
 – Messages panel
 – Configuration panel
User Interface – Visualization Panel

- Main component of the user interface
- Shows the hierarchical Markovian model
 - Can use the zoom function to expand contract states
- Displays:
 - Circles: states on the current level (with ID/name and average staying time), sizes proportional to the stationary distribution
 - Arrows: state transitions (with probability)
- Highlighted states:
 - Current state: green
 - Most likely future states: blue
 - Previous state: red border
 - Selected state: bold border
- Other features:
 - Select target attribute: states are colored according to the value of the target attribute (green, red)
 - Show probability distribution at future/past times: states get colored according to the probability of the system being in them at a predefined past/future time
User Interface – State Details Panel

• Shows detailed information about the selected state
 - Identifier of the state
 - Name of the state
 - Average values of both sets of attributes
 - How specific each parameter is for that state
 - Distribution of attributes in a state

• Other features:
 - Manual adjustment of control attributes: the user can manually adjust the values of control attributes in the selected state, after adjustment the visualization is automatically updated
 - Naming the selected state: the user can give the selected state a name, which will be displayed in the visualization panel instead of the identifier
 - Mark the state as “target”: predictions about arrival times into target states are shown in the messages panel
Outline

• Introduction
• Implementation
• Use-cases
• Further work
Use-Cases

• StreamStory supports several use-cases:
 – Data exploration / Exploratory data mining
 – Equipment / production monitoring
 – Anomaly detection
 – Root cause analysis
 – Prediction

• Deployed on two case-studies
 – Monitoring drilling equipment
 – Monitoring car lens production
Outline

• Introduction
• Implementation
• Use-cases
• Further work
Further Work

• Transition modeling
 – Transitions are only model at the lowest-level states
 – Include higher-level information

• Implementing new features
Thank You

- Questions?