Deep Learning
(hopefully faster)

Adam Coates

Baidu Research

Silicon Valley AI Lab
Scope

• AI and Deep Learning depend heavily on systems for training and deployment.
 – Many many tools to solve systems problems.
Scope

• Focus on making models train faster.
 – Huge topic! Best to see a ton of ideas over time.
• This talk: conceptual tools to help DL practitioner strategize and decide what to do next.
Overview

- Basic motivations & approach
- Single node: 1 GPU or 1 CPU.
- Multiple nodes.
Cycle time argument

- DL / ML research involves guided exploration.
 - We want shorter overall experiment time (wall time) so that we can make faster research progress!
Scaling argument

Which models lend themselves to this trend? → Which models get better rapidly with time?

Past Present Future

Data & Compute

Performance

Time + Effort

Deep Learning
Approach

• Several ways to try to make system faster.
 – Change the software.
 – Change the hardware.
 – Change the model / algorithm.
 • Hard to chase systems+accuracy at once.

 – We’ll talk about performance modeling: Basic idea applicable to all of these decision processes.
 • We’ll work some examples.
Workload

• Most DL workloads built on common operations:

Convolution with small filters: \(r = \text{conv}(\text{filters, data}) \)
Point-wise nonlinearities: \(r = \text{max}(0, z) \)
Dense linear/affine operations: \(r = A^*z + b \)
Reductions: \(Z = \text{sum}(p) \)
...

...
Workload

• Given *fixed* problem size, we will work on maximizing *throughput*.

 — Rate at which operations are completed.

\[
\text{Throughput} = \frac{\text{(#operations)}}{\text{(running time)}}
\]

If #operations is a constant \Rightarrow Same as minimizing running time.
Caveat

• Throughput doesn’t consider convergence time.
 – Convergence depends on hyperparameters, etc., not systems.

• If you’re trying to make changes to model or hyperparameters, beware:
 – Throughput is gameable.
 – E.g., Minibatching:
 • Bigger minibatch = higher throughput!
 • But not always best wall time for whole experiment.
SINGLE NODE PRINCIPLES
Setting goals

• While thinking through speed and systems issues, best question to keep asking:
 – How much could be gained? (Is it worth it?)

• To answer: need to be able to assess potential gain.
 – Go for biggest, cheapest gains.
 – Keep going until you hit diminishing returns.
The speed of light

Your baseline is not how slow your current code runs.

- 10x speedup over slow code would be great.
- How do you know if you can get 10x?
- How do you know if there’s more to do?
The speed of light

- Baseline is the *fastest your code can ever run.*
 - I.e., maximum potential *throughput.*

- This is “the speed of light” for your system.
 - 0.5c is pretty good. Potential ~2x speedup left.
 - 0.8c is very good. Only ~1.25x speedup left.

- Usually costs more effort to go faster if already close to speed of light.
 - Also: could be time to buy more GPUs.
The speed of light

Your baseline is not how slow your current code runs.

– Your “baseline” is the *fastest it can ever run*.
 • This is “the speed of light” for your system.

Goal: for single node, quickly estimate speed of light for DL operations.
Performance modeling

• Given a fixed computation to perform, how do we estimate maximum potential throughput?
 – Hard to do in general. Modern processors are complicated!

• We’ll use a simple scheme that is quick and will give you intuition.
Model of a compute node

- Represent computation and memory only.

 Only represents two key hardware limitations:
 - Total computation system can perform.
 - Total bandwidth available to memory.
Model of a compute node

- Example: GPU circa 2015
 - Computing limit: ~6 TFLOP/S
 - Memory bandwidth: ~300 GB/s
- **Key assumption:** we can always stream memory simultaneously with computation.
Model of a compute node

- If we run a sequence of operations, timeline might look like:
Example: Matrix-vector multiply

Compute: $A v$ for single-precision operands.

- How much data do we need to load from memory? 4 bytes $\times (MN + N)$
- How much data do we need to store to memory? 4 bytes $\times M$
- How many FLOPs? $M (2N - 1) \approx 2MN$
Example: Matrix-vector multiply

For $M=1024$ and $N=512$, what is the best possible throughput (in operations per second)?

Memory: $4 \text{ bytes} \times (1024 \times 512 + 512 + 1024) = 2.1 \times 10^6 \text{ bytes}$

FLOPs: $2 \times 1024 \times 512 = 1 \times 10^6 \text{ FLOPs}$

Running time $= \max\{ \frac{2.1 \times 10^6 \text{ bytes}}{300 \times 10^9 \text{ bytes/s}}, \frac{1 \times 10^6 \text{ FLOPs}}{6 \times 10^{12} \text{ TFLOP/s}} \} = \max\{ 7 \text{us}, 0.16 \text{us} \}$

Even substantial change in this number is irrelevant.

The effective throughput is $(1 \times 10^6 \text{ FLOPs} / 7 \text{us}) = 142 \text{ GFLOPs}$
Arithmetic intensity

• A key quantity related to throughput is the arithmetic “intensity”:

\[
\text{Intensity} = \frac{\text{(# arithmetic ops)}}{\text{(# bytes to load or store)}}
\]

• E.g., for previous scenario, intensity is:

\[
\text{Intensity} = \frac{1\times10^6 \text{ FLOPs}}{2.1\times10^6 \text{ bytes}} = \boxed{0.5 \text{ FLOPs/byte}}
\]

➤ Low intensity = bottlenecked on memory.
The “Roofline” model

• Williams, Waterson, Patterson 2009:
 – Visualize maximum throughput of our 2-part system as a function of intensity.

Two constraints are easy to draw:

- Compute limit: 6 TFLOP/s
- Slope = Bandwidth limit: 300GB/s
The “Roofline” model

- Williams, Waterson, Patterson 2009:
 - Visualize maximum throughput of system as a function of intensity.

Two constraints are easy to draw:

\[
\text{Intensity} = \frac{6 \text{ TFLOP/s}}{300 \text{ GB/s}} = 20 \text{ FLOPs/byte}.
\]
The “Roofline model”

• Easy to see relationship between memory-bound and compute-bound work.
 – Based on “theoretical” numbers: need intensity > 20 FLOPs/byte to be compute bound.

• Why is this useful to know?
 – Below 20 FLOPs/byte, compute is not constraining.
Example: matrix-matrix multiply

- Compute: \(C = C + A \cdot B \) for single precision matrices.

\[
\begin{align*}
\text{Memory to load + store: } & \quad 4 \text{ bytes} \times (MK + KN + 2MN) \\
\text{FLOPs to compute: } & \quad \approx 2 \times MKN
\end{align*}
\]

For \(M=K=N=512 \):

Intensity = 64 FLOPs / byte \quad (Should be compute-bound)
Example: matrix-matrix multiply

• Notice: we analyzed two operations as one.

\[
C' = A \times B \text{ Compute} \quad C' + C \text{ Load/Store}
\]

\[
C' = A \times B \text{ Load/Store} \quad C' + C \text{ Load/Store}
\]
Example: matrix-matrix multiply

- Implicitly assuming we can overlap load/store of C to save time.
The “Roofline” model

- Roofline is the upper speed limit.
 - In practice, your code probably doesn’t reach it.
 - Pick the piece of code that:
 (i) is responsible for most of running time.
 (ii) has some headroom for improvement.
Roofline in practice

• Theoretical limit is hard to reach with fully generic code.
 – E.g., CuBLAS sgemm can achieve peak with large matrices, but tends to do badly for small matrices (bandwidth-bound).
 – Might need to sanity-check boundaries with small benchmarks.
 • E.g., Many Kepler GPUs could not achieve > 50% floating point peak using CUDA code.
Roofline in practice

• Often decent:

[Graph showing operational intensity vs. performance with various benchmarks and data points labeled, such as daxpy, dgemv, and dgemm.]

[Reference: Ofenbeck et al., 2014]
Summary

• Want to find maximum potential throughput ("speed of light") to know best performance we can ever get.
 – Benchmark against this.
 – Factor speedup is nice; but not actionable.

• Use operational intensity and roofline model to quickly spec out what performance you might be able to achieve.
SINGLE NODE ISSUES
Minibatch size

• Common to process “minibatch” of examples.
 – Historically, minibatch size=1 has led to faster convergence. But this does not imply fastest experiment.

• What size should we use then?
Minibatch size

- For DNN with $N \times N$ weights, minibatch size M:
 - $\text{Ops} = 2N^2 M$, $\text{Memory} = 4(N^2 + 2NM)$
 - Consider intensity for $M=1\ldots1024$:
Minibatch size

- Below $\approx M=64$, operations are memory-bound.
 - Increasing M leads to sub-linear increase in compute time.
- Beyond 64, DNN operations will be compute-bound.
 - Increasing M further leads to linear increase in time.
- Effect: experiment time falls, then rises again with M.

![Graph](image-url)
Moral of story

• For minibatch size:
 – Not much harm in raising until you are compute-limited; not much to gain beyond this point.

• In general, if you’re not compute limited, there could be a free lunch in your future.
 – Bigger model = fit more data.
 – Bigger minibatch = faster convergence.
Optimizing software

- OK – your model is supposed to be compute limited now. But you’re not achieving throughput you expect.
 - How do you make it fast?
 - Roofline model suggests some tactics over others.

![Diagram showing Throughput (FLOP/s) vs. Intensity (FLOPs / byte)]

No bandwidth issues! → Matrix-matrix
Things to try

• Low intensity workloads:
 – Try to increase intensity by accessing memory less.

 (Try this first if you’re in the “middle ground”!)

 • Look for data-reuse that will help you avoid redundant loading.

 – Focus on improving memory performance.
 • Sequential accesses on CPU / coalesced access on GPU.
 • Prefetch by hand.

• High intensity workloads:
 – Focus on improving compute performance.
 • Specialized instructions (SIMD, FMA = fused multiply add).
 • Adjust instruction mix.
 • Loop unrolling.
Note on code complexity...

- Very hard to write kernels that employ many optimizations at once.
 - And best optimization depends on problem parameters!

- Usually: dispatch problems into separate pieces of code optimized for different scenarios.
MULTINODE
Training with clusters

• To go very fast, we want to use many CPUs, GPUs, or many machines at once.
 – Relatively fewer tools and libraries to help.
 • It’s not that easy to automate.

• Re-use some of analysis tools to guide your decisions on how to parallelize work.
What can we hope to achieve?

• Ideal case: starting from single-node job, achieve higher throughput using more nodes for same job.
What can we hope to achieve?

- Starting from single-node job, achieve higher throughput using more nodes for same job. (Ideally, 2x throughput.)

This is “strong scaling”: run same job in half the time.
What can we hope to achieve?

- Alternatively, we could parallelize and make workload larger (bigger model, bigger minibatch)

This is “weak scaling”: run larger job without slowing.
Example: weak scaling

Small network doesn’t get faster with more GPUs. But giant networks run about same speed.

[Coates et al., 2013]
Weak vs. strong

• If you can use a bigger model, or if a 2x increase in minibatch would help:
 – Job is a good candidate to scale up.
 – *Recommend doing this first.*

• In practice:
 – Sometimes don’t want a big net (e.g., data)
 – Minibatch size has already hit diminishing returns.
 – Want faster *cycle time* so we can learn quickly.

• What makes strong scaling difficult?
Performance modeling

• To understand this, need to analyze performance of multi-node system.

• First: let’s partition work and just start by assuming infinite network bandwidth.
Example: Data Parallelism

- Common practice: partition training job by splitting minibatch (X) in half.
 - Keep model (W) synchronized over network.

- What happens to workload on Node 1?
Example: Data Parallelism

<table>
<thead>
<tr>
<th></th>
<th>FLOPs</th>
<th>Memory</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before:</td>
<td>2 MKN</td>
<td>4(MK+KN+MN)</td>
<td>MKN/(2(MK+KN+MN))</td>
</tr>
<tr>
<td>After:</td>
<td>MKN</td>
<td>4MK + 2KN + 2MN</td>
<td>MKN/(2(2MK+KN+MN))</td>
</tr>
</tbody>
</table>

- Node 1 operational intensity falls!
Local throughput

• This may or may not cause a problem depending on size of model.
 – Intensity = $\frac{MKN}{2(2MK+KN+MN)}$

We’ll assume that Node 1 can still run at max throughput. Otherwise, need to prorate Node 1’s throughput limit for any other analysis.
Performance Modeling

• Even with infinite network bandwidth, we might not be able to scale.
 – Have to be mindful of how distributing affects local node’s efficiency.

• Next:
 – Assume local throughput is nice: 6 TFLOP/s
 – How do we analyze communication?
Performance modeling

• Approach we used to analyze operations for single node also useful for thinking about multiple nodes.
 – But make distinction between *local* and *remote* memory.
“Roofline” model

• Analyze performance of nodes in terms of their *local throughput* + bandwidth to *remote* data.
“Roofline” model

• Analyze performance of nodes in terms of their local throughput + bandwidth to remote data.

Note much higher intensity: need to do 1000 FLOPs locally (at 6 TFLOP/s throughput) for every 1 byte of network traffic.
Example: Data Parallelism

• What about gradient updates / communication?
• Analyze distributed operation for Node 1.

\[W = W + \epsilon D X^T \]

Send(\(W \), Node 2)
Example: Data Parallelism

- Node 1 needs to perform computation on local portion of D, X and local copy of W.
- Send updated W to Node 2.

<table>
<thead>
<tr>
<th>FLOPs</th>
<th>MNK + 2MK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Memory</td>
<td>4MK</td>
</tr>
<tr>
<td>Overall Intensity</td>
<td>(MNK + 2MK)/4MK = N/4 + 1/2</td>
</tr>
</tbody>
</table>

Number of FLOPs we can carry out on Node 1 per byte of network traffic.
Overall throughput

- How big does N need to be to achieve high overall throughput?
 - Overall intensity $\approx \frac{N}{4}$

Need $N \geq 4000$ to be compute bound!
Assumptions

- ...wait. We violated a modeling assumption:

 Key assumption: we can always stream memory simultaneously with computation.

- But we introduced a dependency:

 \[W = W + \epsilon D X^T \]

 Send(W, Node 2)

- We can deal with this a few ways:
 - More analysis to overlap Send() with other ops.
 - Actually stream W while it’s being computed.

 Don’t forget overlap assumption.
 Optimize code to make it true.
Putting everything together

• Seen how partitioning affects our ability to scale.
 – Changes size/shape and intensity of local work.
 – Distribution introduces network bandwidth limit.
 – Use roofline to get a sense for both issues!
Putting everything together

• Suggested design process:
 1. Scale up weakly if you can. (Strong scaling is hard.)
 • I.e., Make your model + minibatch as large as practical before parallelizing.
 2. Choose a partition of the work and data over nodes.
 3. Estimate local node max throughput (via roofline or benchmarking)
 4. Use local throughput and cluster network bandwidth to create multi-node roofline model.
 5. Estimate overall max throughput of work on each node.
 6. Are you happy?
 • No: Go to next slide, or try new partition.
 • Yes: Go back to deep learning.
Optimization strategy

• Like single-node: find operations that use bulk of time.
• Hunt for partitioning scheme that has a lot of potential (i.e., high “speed of light”)
• Search for opportunities to increase communication+compute overlap.
• Judiciously apply hardware.
 – Compute limited: more GPUs / CPUs.
 – Bandwidth limited: faster network.
 • E.g., dual-rail connection, or 100G networks.
CONCLUSION
Key ideas

• Measure against the “speed of light”: the fastest your code could ever run.

• Use simple performance models to understand tradeoffs; identify approaches with high potential.

• Challenging part of multinode training is partitioning and communication.
 – Build intuition for good/bad schemes by trying out different choices and calculating max throughput.
Thank you!

Thanks: Greg Diamos & Bryan Catanzaro

References:

Samuel Williams, Andrew Waterman, David Patterson. “Roofline: An Insightful Visual Performance Model for Multicore Architectures.”
http://www.eecs.berkeley.edu/~waterman/papers/roofline.pdf