Perinasal Indicators of Deceptive Behavior

Malcolm Dcosta, Dvijesh Shastri, Ricardo Vilalta, Judee K. Burgoon and Ioannis Pavlidis
• Introduction
• Methodology
• Experimental Results
• Conclusion
• Deception
 —“To purposely mislead”
Deception
— “To purposely mislead”

Critical cases requiring deception analysis
— In matters concerning national security
 Interrogating suspect terrorists
 Screening people with security clearances
— Criminal justice system
Behavioral Observations

- Voice
- Gestures
- Facial Expressions

Physiological Measurements

- Adrenergic indicators
 - Heart rate
 - Breathing rate
- Cholinergic indicators
 - Electrodermal Activity
Deception Detection Methods

Behavioral Observations
- Voice
- Gestures
- Facial Expressions
 i. More qualitative

Physiological Measurements
- Adrenergic indicators
 - Heart rate
 - Breathing rate
- Cholinergic indicators
 - Electrodermal Activity
 i. More quantitative
Deception Detection Methods

Behavioral Observations
• Voice
• Gestures
• Facial Expressions
 i. More qualitative
 ii. Can be controlled to some degree

Physiological Measurements
• Adrenergic indicators
 - Heart rate
 - Breathing rate
• Cholinergic indicators
 - Electrodermal Activity
 i. More quantitative
 ii. Difficult to control
Behavioal Observations

- Voice
- Gestures
- Facial Expressions

i. More qualitative
ii. Can be controlled to some degree
iii. Unobtrusive

Physiological Measurements

- Adrenergic indicators
 - Heart rate
 - Breathing rate
- Cholinergic indicators
 - Electrodermal Activity

i. More quantitative
ii. Difficult to control
iii. Contact based methods
Behavioral Observations
- Voice
- Gestures
- Facial Expressions
 i. More qualitative
 ii. Can be controlled to some degree
 iii. Unobtrusive

Physiological Measurements
- Adrenergic indicators
 - Heart rate
 - Breathing rate
- Cholinergic indicators
 - Electrodermal Activity
 i. More quantitative
 ii. Difficult to control
 iii. Contact based methods
 ➔ Thermal imaging
Perinasal Channel

• Thermal Imaging – Periorbital Channel \[1\]

• Thermal Imaging – Periorbital Channel [1]
• Perinasal Channel
 — Measures sympathetic arousal
 — Perinasal perspiration has been linked to bouts of stress [2]
 — Perinasal response is concomitant to finger response [2]

• Thermal Imaging – Periorbital Channel \[1\]

• Perinasal Channel
 — Measures sympathetic arousal
 — Perinasal perspiration has been linked to bouts of stress\[2\]
 — Perinasal response is concomitant to finger response\[2\]
 — Deceptive behavior under stakes causes stress
 — Stress manifests through instantaneous perspiration
 - fingers & perinasal region

• Introduction

• **Methodology**

• Experimental Results

• Conclusion
• Collaborative effort
 — Technology group
 — Psychology group
 — Evaluation group
• Collaborative effort
 — Technology group
 — Psychology group
 — Evaluation group

• Design Considerations
 — Realism
 — High stakes
 — Motivation to perform
• Experiment: mock crime scenario – stealing a ring
• Subjects listen to prerecorded instructions
 — Programmed Truthful or Deceptive
• Experiment: mock crime scenario – stealing a ring
• Subjects listen to prerecorded instructions
 — Programmed Truthful or Deceptive
• They go to a room – chance to commit crime
Experimental Design

<table>
<thead>
<tr>
<th>Experiment Briefing</th>
<th>Chance to Steal The Ring</th>
<th>Interview</th>
</tr>
</thead>
</table>

- Reid interview technique[^4]
- Stressful and easy questions (**Relevant and Irrelevant**)

• Goal: Convince interviewer of their innocence

• Subject compensation:
 • If successful in convincing interviewer: $15 + $50
 • If unsuccessful: Only $15
Experimental Setup

• ThermoVision SC6000 MWIR
 — Temperature resolution: 0.025°C
 — Spatial resolution: 640x480 pixels
 — Lens: 100 mm
 — Subject’s distance from camera: 13 ft
 — Recording speed: 25 fps
• Introduction
• Methodology
• Experimental Results
• Conclusion

Step-1 Signal Extraction

Step-2a: Audio Segmentation
Step-2a: Audio Segmentation

- Each question & answer pair is segmented

- Indexing question-answer pairs
Step-2b: Interview Segmentation

- Grouping of questions and answers based on similarity

<table>
<thead>
<tr>
<th>Easy Questions</th>
<th>IR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficult Questions</td>
<td>R1</td>
</tr>
<tr>
<td>Easy Questions</td>
<td>IR2</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R2</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R3</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R4</td>
</tr>
</tbody>
</table>

![Graph showing raw energy over time](chart.png)
Step-2b: Interview Segmentation

- Grouping of questions and answers based on similarity

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy Questions</td>
<td>IR1</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R1</td>
</tr>
<tr>
<td>Easy Questions</td>
<td>IR2</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R2</td>
</tr>
<tr>
<td></td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td>R4</td>
</tr>
</tbody>
</table>

Graph showing raw energy over time.
Step-2b: Interview Segmentation

- Grouping of questions and answers based on similarity

<table>
<thead>
<tr>
<th>Easy Questions</th>
<th>IR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficult Questions</td>
<td>R1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Easy Questions</th>
<th>IR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficult Questions</td>
<td>R2</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R3</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R4</td>
</tr>
</tbody>
</table>
Step-2c: Signal Segmentation

- Indexing the perspiration signal via the audio segments

<table>
<thead>
<tr>
<th>Easy Questions</th>
<th>IR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficult Questions</td>
<td>R1</td>
</tr>
<tr>
<td>Easy Questions</td>
<td>IR2</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R2</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R3</td>
</tr>
<tr>
<td>Difficult Questions</td>
<td>R4</td>
</tr>
</tbody>
</table>

Six Segments
Step-2c: Signal Segmentation

• Indexing the perspiration signal via the audio segments

Six Segments

- IR 1
- R1
- IR 2
- R2
- R3
- R4
• Feature \(\rightarrow\) rate of perspiration per segment
• Feature \rightarrow rate of perspiration per segment
Feature Extraction

- Feature → rate of perspiration per segment

Glands secrete in a pulsate manner[5]
- Use wavelet analysis to compute rate

Feature Extraction

- Introduction
- Methodology
- Experimental Results
- Conclusion

Features

<table>
<thead>
<tr>
<th>Subject</th>
<th>IR1</th>
<th>R1</th>
<th>IR2</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>0.03385</td>
<td>0.09149</td>
<td>0.05936</td>
<td>0.04836</td>
<td>0.03627</td>
<td>0.07228</td>
</tr>
<tr>
<td>D004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Hypothesis

• All participants experience some stress during the interview
• All participants experience some stress during the interview
Hypothesis

• All participants experience some stress during the interview

- Truthful Subject
 - Irrelevant Questions
 - Relevant Questions

- Deceptive Subject
 - Irrelevant Questions
 - Relevant Questions

• Deceptive subjects experience higher stress during the relevant questions
• Test the differential rate of perspiration between relevant and irrelevant question segments

\[f_R - f_{IR} \rightarrow \begin{cases}
> 0 & \text{subject}(i) \text{ is D} \\
\leq 0 & \text{subject}(i) \text{ is T},
\end{cases} \]

where,

\[f_R = avg(f_{R1}(i), f_{R2}(i), f_{R3}(i)), \]
\[f_{IR} = avg(f_{IR1}(i), f_{IR2}(i)), \]
Machine Learning Approach

• Classifiers

— Decision Tree
— AdaBoost using Decision Stump
— AdaBoost using Naïve Bayes
— Multilayer Perceptron
• Introduction
• Methodology
• Experimental Results
• Conclusion
• Total of 40 subjects used in analysis (17 M, 23 F)

• Training set (25 subjects)
 — Leave-one-out cross validation

• Test set (15 subjects – Blind prediction)
Classification Success Rates

Training Set

- Truthful
- Deceptive

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold Classifier</td>
<td>90</td>
</tr>
<tr>
<td>Multilayered Perceptron</td>
<td>70</td>
</tr>
<tr>
<td>Decision Stump</td>
<td>90</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>80</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>90</td>
</tr>
</tbody>
</table>
Classification Success Rates

Test Set

- Threshold Classifier
- Multilayered Perceptron
- Decision Stump
- Decision Tree
- Naïve Bayes

Truthful vs. Deceptive

Percentage (a)
Classification Success Rates

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Training Set</th>
<th>Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold Classifier</td>
<td>95%</td>
<td>85%</td>
</tr>
<tr>
<td>Multilayered Perceptron</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Decision Stump</td>
<td>85%</td>
<td>75%</td>
</tr>
<tr>
<td>Decision Tree</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>95%</td>
<td>85%</td>
</tr>
</tbody>
</table>

- Introduction
- Methodology
- **Experimental Results**
- Conclusion
• Introduction
• Methodology
• Experimental Results
• Conclusion
• Perinasal perspiratory rate tracks deceptive behavior within an appropriate interrogation context
• Perinasal perspiratory rate tracks deceptive behavior within an appropriate interrogation context

• Good psychology theory +
 Good experimental practice +
 Good physiology theory +
 Good methods
• Perinasal perspiratory rate tracks deceptive behavior within an appropriate interrogation context

• Good psychology theory +
 Good experimental practice +
 Good physiology theory +
 Good methods

• Performance scales up from training to test set
• This work was supported by the National Center for Credibility Assessment