Convex Risk Minimization
and
Conditional Probability Estimation

Matus Telgarsky
Miro Dudík
Robert Schapire
Setting. Convex risk minimizing sequences of linear predictors.

Goal. Convergence properties relevant to classification.

Obstruction. Unboundedness and infinite dimension.
Predictors \((f_i)_{i \geq 1}\) with:

- **\(f_i\) linear**: \(f_i = \sum_{h \in \mathcal{H}} w_i(h)h\), where \(\mathcal{H} \ni h : \mathcal{X} \to [-1, +1]\).
- **\((f_i)_{i \geq 1}\) minimize risk**: \(\text{Risk}(f_i) \to \inf_{f \text{ linear}} \text{Risk}(f)\), where

\[
\text{Risk}(f) := \int \ell(-yf(x))d\mu(x, y)
\]

for certain losses \(\ell\) with \(\ell'' > 0\) and \(\lim_{r \to -\infty} \ell(r) = 0\).
Predictors \((f_i)_{i \geq 1}\) with:

- \(f_i\) linear:
 \[f_i = \sum_{h \in \mathcal{H}} w_i(h) h, \text{ where } \mathcal{H} \ni h : \mathcal{X} \to [-1, +1]. \]

- \((f_i)_{i \geq 1}\) minimize risk:
 \[\text{Risk}(f_i) \to \inf_{f \text{ linear}} \text{Risk}(f), \text{ where} \]
 \[\text{Risk}(f) := \int \ell(-yf(x))d\mu(x, y) \]
 for certain losses \(\ell\) with \(\ell'' > 0\) and \(\lim_{r \to -\infty} \ell(r) = 0\).

Conditional probability models:

\[\eta_f(x, y) := \frac{1}{1 + \exp(-yf(x))} \quad \text{logistic } \ell; \]

\[\eta_f(x, y) := \frac{1}{1 + \frac{\ell'(-yf(x))}{\ell'(yf(x))}} \quad \text{generic } \ell. \]
There exists a unique $\bar{\eta}$ so that every $(f_i)_{i \geq 1}$ with f_i linear and

$$\text{Risk}(f_i) \rightarrow \inf_{f \text{ linear}} \text{Risk}(f)$$

satisfies

$$\eta f_i \rightarrow \bar{\eta}.$$
There exists a unique $\bar{\eta}$ so that every $(f_i)_{i \geq 1}$ with f_i linear and

$$\text{Risk}(f_i) \longrightarrow \inf_{f \text{ linear}} \text{Risk}(f)$$

satisfies

$$\eta f_i \longrightarrow \bar{\eta}.$$

Motivation:

- **Risk** is only a surrogate; need to say more about $(f_i)_{i \geq 1}$.
- $(\eta_i)_{i \geq 1}$ and $\bar{\eta}$ capture what is needed for classification.
There exists a unique $\bar{\eta}$ so that every $(f_i)_{i \geq 1}$ with f_i linear and

$$\text{Risk}(f_i) \longrightarrow \inf_{f \text{ linear}} \text{Risk}(f)$$

satisfies

$$\eta f_i \longrightarrow \bar{\eta}.$$

Generality:

- Infinite dimensional and unbounded.
- Applies to no/weakening regularization.
Additionally, when $|\mathcal{H}| < \infty$, with $\Pr \geq 1 - \delta$ over a draw of $n \geq \Omega(\ln(1/\delta))$ examples, each linear f has

$$\int |\eta_f - \bar{\eta}| d\mu \leq O \left(g(\hat{\text{Risk}}(f)) \sqrt{\text{Excess Risk}(f) + \frac{\ln(n/\delta)}{n}} \right),$$

with (nondecreasing) g and O independent of f and the sample.
Additionally, when \(|\mathcal{H}| < \infty\), with \(\Pr \geq 1 - \delta\) over a draw of \(n \geq \Omega(\ln(1/\delta))\) examples, each linear \(f\) has

\[
\int |\eta_f - \bar{\eta}| d\mu \leq O \left(g(\hat{\text{Risk}}(f)) \sqrt{\text{Excess Risk}(f) + \frac{\ln(n/\delta)}{n}} \right),
\]

with (nondecreasing) \(g\) and \(O\) independent of \(f\) and the sample.

Generality:
- Finite dimensional but still unbounded.
Step 1. Craft $\tilde{\eta}$ via the dual optimum.
Step 1. Craft $\bar{\eta}$ via the dual optimum.

Step 2.
Step 1. Craft $\tilde{\eta}$ via the dual optimum.

Step 2.
Step 1. Craft $\bar{\eta}$ via the dual optimum.

Step 2.