Escaping
Groundhog Day

James MacGlashan
Stefanie Tellex
Michael Littman

BROWN
Key Message

Ground: everything is constant

Problem Generators: some constants, some variables

Figure: everything varies
Reinforcement Learning
What if something changes?
Groundhog Day Assumptions
Groundhog Day Assumptions
Groundhog Day Assumptions

- Reward function is always the same
- State resets indefinitely
- Resets to states similar to those visited
Groundhog Day Assumptions

- Reward function is always the same
- Resets indefinitely
- Resets to states similar to those visited
- Enables **hyper optimization**
Groundhog Day Successes

Tesauro, 1995
Crites and Barto, 1996
Singh and Bertsekas, 1997
Ng et al., 2004
Peters and Schaal, 2007
Mnih et al. 2015
Between Ground and Figure
Learn what changes

- RMax learns the transitions and keeps them
- Subsequently only learns about goal
Escaping Groundhog Day

- Relax groundhog day assumptions
- Investigate benchmark problems generators
- Develop appropriate learning machinery
Escaping Assumptions

- Problem generator that can affect
 - initial state distribution
 - reward function/goal
 - action model
- After learning, a new problem is generated
- Some things remain the same, some vary
- Learn to behave across distribution
Related Areas

- Learning hierarchical actions
- Transfer learning
- Bayesian RL
Problem Generators

Robotics

Minecraft
Robotics

- The real world is complex
- Easy to create variation in the environment
- Examine tasks other than motion controllers
Minecraft

- Can expand to very large worlds
- Turing complete complexity
- Safe; no hardware failures
- Many possible goals
- Very easy to manipulate
Reasoning with a Problem Generator

- Need mechanisms to generalize knowledge across problems
 - Requires reasoning about the state
- Some existing approaches
 - Agent space features (Konidaris and Barto, 2007)
 - Intertask mappings (Taylor, Stone, and Liu, 2007)
 - Horde (Sutton, Modayil, Delp, Degris, Pilarski, White, and Precup, 2011)
- We will highlight **Object-oriented MDPs** (Diuk, Cohen, and Littman, 2008)
 - Works well for robotics environments and Minecraft
OO-MDPs
(Diuk, Cohen, Littman, 2008)

World consists of objects that belong to classes

- robot
- room
- door
- block
Each object has a value assignment to its attributes

- robot0
 \((x,y) := (2,6)\)
- block1
 \((x,y,color,shape) := (2,3,blue,chair)\)
- etc.
OO-MDP Generalization

- Transition dynamics factored by objects
- DOORMax (Diuk, Cohen, and Littman, 2008)
- Physics based Prior (Scholz, Levihn, Isbell, and Wingate, 2014)
BURLAP

http://burlap.cs.brown.edu

- Java RL and Planning Library
- Problem and State Generators
- OO-MDP Representation
- ROS interface
- Minecraft interface

github.com/h2r/burlapcraft
What we can learn

• World physics
• Learning to learn
• Learning to plan
• Task decomposition and representation
• Learning about natural language
Learning to Learn

- Given two parameterized algorithms, which do we use?
- For single problem tune each and extract policy
- For problem distribution, need to worry about over and under fitting
- Compute theoretical generalization bounds
- Works with weak parameter optimization and samples
Learning to Plan

(ABEL, HERSHEYKOWITZ, BARTH-MARON, BRAWNER, O’FARRELL, MACGLASHAN, AND TELLEX, 2015)

- Goal-directed action priors
 - Not all actions are relevant for a given goal-type in every state
 - Learn possibly relevant actions and prune the rest
 - Prune irrelevant actions

\[\{\pi_1, \ldots\} \rightarrow \text{Supervised Learning} \]

\[\text{Planning} \rightarrow \text{Problem Generator} \]

\[\{\pi_1, \ldots\} \rightarrow \text{Supervised Learning} \]
1. Classic RL Is Like the Movie Groundhog Day

- Wake up
- Act in the world until completion
- Reset back to the beginning
- Hyper optimize with retries

Q-learning value function very slowly shifts to the new goal location

Before goal change

100 steps

800 steps

2. Brittle to Changes

500 steps

800 steps

3. Escaping Groundhog Day

- Relax assumptions
- Investigate benchmark problem generators
- Develop appropriate learning machinery

3. Escaping Groundhog Day

- Relax assumptions
- Investigate benchmark problem generators
- Develop appropriate learning machinery

4. Relax Problem Assumptions

- Problem can affect
- Reset states
- Transition function
- Reward function
- Learn what is ground and figure

Related Areas
- Learning Action Hierarchies
- Transfer Learning
- Bayesian RL

5. Domains for Problem Generators

Robotics
- The real world is complex
- Easy to have variation in the environment
- Range of learning tasks beyond motion controllers

Minecraft
- Enormous worlds
- Turing complete complexity
- Safe
- No hardware failures
- Many possible goals
- Easy to manipulate

6. Object-oriented MDPs

(Dilk, Cohen, and Littman, 2008)
- Represent state as a collection of objects
- Each object receives a value assignment, e.g., robot := <2,6>; block0 := <2,2,chair,blue>; ...
- Permits learning object-wise transition functions

7. BURLAP

http://burlap.cs.brown.edu
- Java RL and planning library
- Problem and state generators
- DO-MDP Representation
- ROS Interface
- Minecraft interface
- github.com/h2r/burlapcraft
- Function approximation
- Options
- Inverse RL
- Multi-agent
- and more!

8. Learning to Learn

- Tune and select an algorithm for a distribution of problems.
- Introduce Sample Optimized Rademacher Complexity to generate generalization bounds
- Formal bounds from training problems and weak parameter optimization
- Grounds as many parameters as possible

Example
- Two classes of Q-learning parameters to tune
 1) epsilon, learning rate
 2) epsilon, learning rate, all initial Q-values
- On a narrow distribution with little data, choose (2); on wide distribution choose (1)

9. Learning to Plan

(Abel, Hershkowitz, Barth-Maron, Brawner, O'Farrell, MacGlashan, and Tellex, 2015)
- Not all actions are relevant for all states and goals
- Prune irrelevant actions
- Learn optimality probability from solved training problems
- Grounds bad action decisions
- We test on Minecraft
- Training data consists of small problems
- Testing is on larger harder problems

Related Areas
- Learning Action Hierarchies
- Transfer Learning
- Bayesian RL

Figure
- everything varies

Ground
- everything is constant

Problem Generators
- some constants, some variables
Conclusion

- Recent work gearing towards a problem generator paradigm
 - Novel states, reward function, and transition dynamics
 - Some things stay the same; others vary
- Robotics and Minecraft offer interesting problems
- New Machinery
 - OO-MDPs, goal-based action priors, algorithm selection,
- BURLAP - problem generators, ROS, and Minecraft
 - http://burlap.cs.brown.edu
 - Minecraft interface: https://github.com/h2r/burlapcraft
Collaborators

• David Abel
• Krishna Aluru
• Gabriel Barth-Maron
• Stephen Brawner
• Ellis Hershkowitz
• Vukosi Marivate
• Kevin O’Farrell
• Matthew Taylor
• Carl Trimbach
• Eli Upfal
Conclusion

• Recent work gearing towards a problem generator paradigm
 • Novel states, reward function, and transition dynamics
 • Some things stay the same, others vary
• Robotics and Minecraft offer interesting problems
• New Machinery
 • OO-MDPs, goal-based action priors, algorithm selection,
• BURLAP - problem generators, ROS, and Minecraft
 • http://burlap.cs.brown.edu
 • Minecraft interface: https://github.com/h2r/burlapcraft