What limits performance in decision making?

Alexandre Pouget
Department of Basic Neuroscience
University of Geneva

Department of Brain and Cognitive Sciences
University of Rochester
Conclusions

What limits performance in a fully attentive, well-trained animal/human?
Conclusions

What limits performance in a fully attentive, well-trained animal/human?
Is behavioral performance limited by:
Is behavioral performance limited by:

Noise in the brain
Is behavioral performance limited by:

Noise in the brain
Is behavioral performance limited by:

Noise in the brain
Is behavioral performance limited by:

Noise in the brain
Is behavioral performance limited by:

Noise in the brain
Is behavioral performance limited by:

Noise in the brain

or

A combination of suboptimal inference and variability in the sensory inputs and sensors
Is behavioral performance limited by:

Noise in the brain

or

A combination of suboptimal inference and variability in the sensory inputs and sensors
Roadmap
Roadmap

Experiment 1: what appears as noise can be suboptimal inference
Roadmap

Experiment 1: what appears as noise can be suboptimal inference

Experiment 2: noise only has a marginal impact on performance
Olfactory processing

• Olfactory detection and categorization
Olfactory processing

• Olfactory detection and categorization
Dual tasks
Dual tasks

[Diagram showing the process of dual tasks with trial start, stimulus, choice, correct, error, and outcome stages.]

Detection task

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Dual tasks
Dual tasks
Dual tasks

Detection task

Categorization task
Dual tasks
Dual tasks
Dual tasks
Standard Drift Diffusion Model (DDM)

\[\eta(t) = N(\kappa c^\beta, \sigma) \]

\[s(t) = \int_{-\infty}^{t} \eta(\tau) d\tau \]

Parameters:
1. Sensitivity - \(k \)
2. Exponent - \(\beta \)
3. Non-decision time - \(t_d \)
4. Bound height - \(A \)
5. Collapse rate - \(\gamma \)
6. Lapse rate - \(\lambda \)
Predicting Categorization

Detection

(a) % correct

(b) Accuracy

(c) Reaction time (ms)

Odor concentration (v/v)
Predicting Categorization

Detection

% correct

Accuracy

Reaction time

Odor concentration (v/v)

Reaction times (ms)
Predicting Categorization
Possible Explanation

Reaction time

Detection

Categorization

% correct

Accuracy

Odor concentration (v/v)

Reaction time (ms)

Mixture contrast (%)

Graphs a, b, c, and d illustrate the relationship between concentration and reaction time for detection and categorization tasks.
Possible Explanation

• There is an extra source of variability in the categorization task.
Possible Explanation

- There is an extra source of variability in the categorization task.
- Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.

• But why would it be variable?
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.

• But why would it be variable?

• Bad hardware
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.

• But why would it be variable?

• Bad hardware

or
Possible Explanation

• There is an extra source of variability in the categorization task.
• Maybe the animal can’t quite remember the 50% boundary, i.e., the memory of the boundary is variable.

• But why would it be variable?

• Bad hardware
or
• Wrong assumption about the environment (suboptimal inference)
Wrong World Model

• Perhaps the animal wrongly assumes that the task changes over time
Wrong World Model

• Perhaps the animal wrongly assumes that the task changes over time
• This would lead the animal to adjust the categorization boundary even though it should remain the same once properly learned
Choice Biases

• Decisions are biased toward the previous choice

Detection Categorization

Current trial difficulty:
- hard
- easy

Previous trial difficulty
Bad hardware? Stochastic boundary?
Bad hardware? Stochastic boundary?

\[r_A(t) = N(kc_A^2, \sigma) \]

\[s_A(t) = \int_{0}^{t} r_A(\tau) d\tau \]

\[e = w_1 s_A(t) - w_2 s_B(t) + w_3 b \]
Bad hardware? Stochastic boundary?
Bad hardware? Stochastic boundary?

- Noise added to the weight

\[r(t) = N(\theta, \sigma^2) \]

\[s(t) = \int_{-\infty}^{t} r(\tau) \, d\tau \]

\[e = w_1 s_1(t) - w_2 s_2(t) + w_0 b \]
Bad hardware? Stochastic boundary?

- Noise added to the weight
- Weights determine categorization boundary
Bad hardware? Stochastic boundary?

- Noise added to the weight

- Weights determine categorization boundary
- Weights of (1,-1,0) correspond to black diagonal
Bad hardware? Stochastic boundary?

- Noise added to the weight
- Weights determine categorization boundary
- Weights of (1,-1,0) correspond to black diagonal
Bad hardware? Stochastic boundary?

- Noise added to the weight

- Weights determine categorization boundary
- Weights of (1,-1,0) correspond to black diagonal

Noise in categorization boundary

Weights determine categorization boundary
- Weights of (1,-1,0) correspond to black diagonal

Noisy weights imply
Stochastic boundary is not enough

Detection

Categorization

% correct

Reaction time
Stochastic boundary is not enough

Detection

Categorization

% correct

Reaction time

% correct
Stochastic boundary is not enough
Adaptive DDM

\[r(t) = N(kc^2, c) \]

\[s(t) = \int_{-\infty}^{t} r(\tau) d\tau \]

\[e = w_1 s(t) - w_2 s(t) + w_3 b \]

\[\Delta w_3 = \lambda b \]

\[\Delta \tilde{w} = \alpha(\Theta(t_d) - y(t_d))s \]

Reward-dependent learning
Adaptive DDM
Fits with Adaptive DDM
Fits with Adaptive DDM
Fits with Adaptive DDM
Fits with Adaptive DDM

Detection	Categorization

Detection
- **a** Accuracy (% correct)
- **b** Reaction time (ms) vs. Odor concentration (v/v)

Categorization
- **c** Accuracy (% correct)
- **d** Reaction time (ms) vs. Mixture contrast (%)

Choice Bias
- **e** Collapsed bias change vs. Odor concentration (v/v)
- **f** Collapsed bias change vs. Mixture contrast (%)

Predicted
Prediction For All Mixtures
Prediction For All Mixtures
Prediction For All Mixtures
General Principle
General Principle

• If you don’t know how the data were generated, behavior cannot be optimal, which leads to extra variability.
General Principle

• If you don’t know how the data were generated, behavior cannot be optimal, which leads to extra variability.

• For most problems of interest, wrong assumptions about the data generating process is the main source of variability.
General Principle

• If you don’t know how the data were generated, behavior cannot be optimal, which leads to extra variability.

• For most problems of interest, wrong assumptions about the data generating process is the main source of variability
Roadmap

Experiment 1: what appears as noise can be suboptimal inference

Experiment 2: noise only has a marginal impact on performance
Noise and Decoding
Noise and Decoding

In collaboration with Pitkow, Lakshminarasimhan, DeAngelis and Angelaki
Noise and Decoding

Does internal noise affect behavioral performance?
Noise and Decoding

Does internal noise affect behavioral performance?
Noise and Decoding

Does internal noise affect behavioral performance?
Noise and Decoding

Does internal noise affect behavioral performance?

MT

V1

Optimal decoder

Decoder performance

In collaboration with Pitkow, Lakshminarasimhan, DeAngelis and Angelaki
Noise and Decoding

Does internal noise affect behavioral performance?
Noise and Decoding

Does internal noise affect behavioral performance?

In collaboration with Pitkow, Lakshminarasimhan, DeAngelis and Angelaki
Noise and Decoding

Does internal noise affect behavioral performance?

In collaboration with Pitkow, Lakshminarasimhan, DeAngelis and Angelaki
Noise and Decoding

In collaboration with Pitkow, Lakshminarasimhan, DeAngelis and Angelaki

MT

V1

Optimal
decoder

Decoder performance

=

Behavioral performance

Noise
Noise and Decoding

MT

V1

Optimal decoder

Noise

Decoder performance

Behavioral performance

In collaboration with Pitkow, Lakshminarasimhan, DeAngelis and Angelaki
Information in behavior should be a tiny fraction (<5%) of the information recovered by the decoder.
Heading Discrimination

choose "left"
choose "right"

heading
h
Choice Correlations
Choice Correlations

• If the read-out is optimal, and the optimal decoder is linear, choice correlations should follow
Choice Correlations

• If the read-out is optimal, and the optimal decoder is linear, choice correlations should follow

$$C^\text{opt}_k = \frac{\theta}{\theta_k}$$

Correlations between cell responses and behavioral choices
If the read-out is optimal, and the optimal decoder is linear, choice correlations should follow

\[C^\text{opt}_k = \frac{\theta}{\theta_k} \]
Choice Correlations

• If the read-out is optimal, and the optimal decoder is linear, choice correlations should follow

\[C_{k}^{opt} = \frac{\theta}{\theta_k} \]

Correlations between cell responses and behavioral choices

Behavioral threshold

Threshold for neuron k
Choice Correlations

• If the read-out is optimal, and the optimal decoder is linear, choice correlations should follow

$$C_{k}^{opt} = \frac{\theta}{\theta_{k}}$$

Correlations between cell responses and behavioral choices

Behavioral threshold

Threshold for neuron k
Choice Correlations

\[C_k = \beta \frac{\theta}{\theta_k} \]
Choice Correlations

\[C_k = \beta \frac{\theta}{\theta_k} \]
Choice Correlations

\[C_k = 3 \frac{\theta}{\theta_k} \]
Choice Correlations in VIP

• In VIP, some neurons are choice correlations near 1!
• In VIP, some neurons are choice correlations near 1!
Choice Correlations

VIP is odd!

\[C_{k}^{opt} = 3 \frac{\theta}{\theta_k} \]
Choice Correlations

\[C_k^{\text{opt}} = 3 \frac{\theta}{\theta_k} \]
Choice Correlations

$C_k^{opt} = 3 \frac{\theta}{\theta_k}$
This is only possible if VIP is odd!

\[C_{k}^{\text{opt}} = 3 \frac{\theta}{\theta_{k}} \]
Choice Correlations

This is only possible if
1- VIP is highly redundant with other areas

\[C_{k}^{opt} = 3 \frac{\theta}{\theta_k} \]

This is only possible if
1- VIP is highly redundant with other areas
Choice Correlations

This is only possible if:
1. VIP is highly redundant with other areas
2. It’s not read out

\[C_{k}^{opt} = 3 \frac{\theta}{\theta_{k}} \]
VIP and MSTd inactivation

- Inactivating VIP does not affect performance
Choice Correlations

This is only possible if
1- VIP is highly redundant with other areas
2- it’s not read out

\[C_{k}^{opt} = 3 \frac{\theta}{\theta_{k}} \]
Noise and Decoding
Noise and Decoding

• About 80% of the information available in MSTd and VIP is reflected in behavioral performance. (Lakshminarasimhan, Liu, Gu, Pouget, DeAngelis, Angelaki and Pitkow. Submitted)
Noise and Decoding

• About 80% of the information available in MSTd and VIP is reflected in behavioral performance. (Lakshminarasimhan, Liu, Gu, Pouget, DeAngelis, Angelaki and Pitkow. Submitted)

• Noise contribution is 20%, at most, but it could be zero. Decoding may be suboptimal.
Conclusions
Conclusions

Suboptimal Brain fest

With:
Mainen
Mendonca
Vicente
DeWitt

Pitkow
Angelaki
Lakshminarasimhan
De Angelis

Funded by:
Swiss National Funds
NSF
McDonnell Foundation
Simons Foundation