Bootstrapping Skills

Daniel J. Mankowitz 1, Timothy A. Mann 1,2, Shie Mannor 1

1Department of Electrical Engineering
The Technion - Israel Institute of Technology
Haifa, Israel

2Google Deepmind
London, UK
Outline

1. Motivation
2. Skills
3. Algorithm Learning Skills via Bootstrapping (LSB)
4. Convergence Guarantee and Analysis
5. Experiments
Monolithic Policy

- One policy
- Big and Complex
- No attempt to decompose
Example: Monolithic Policy

- Task: Leave the room
- Skill to Learn: Walk to door, grasp door knob, open the door and walk through door opening
Skills

- Accomplish a subgoal (decompose)
- Can be applied in different contexts (reusable)
- Special form of an option [1]
Example: Skills

- Task: Leave the room
- Skills to Learn:
 - Walk
 - Grasp door knob
 - Open the door
Learning Skills

- Given a partition of states
- Find the best ‘local’ policy
- Inspired by Skill Chaining [2]
First theoretical convergence guarantees for iteratively learning skills in a continuous state MDP
Model Iteration

Bootstrapping Skills
Daniel J. Mankowitz, Timothy A. Mann, Shie Mannor

Motivation
Skills
Algorithm Learning Skills via Bootstrapping (LSB)
Convergence Guarantee and Analysis
Experiments

Misspecified Model → Improved Model → Optimal Model

Iteration 1

Iteration 2

... Iteration 5

G

G

σ5
σ4
σ3
σ2
σ1

Optimal Model
Main Theorem

Theorem

Let $\varepsilon > 0$. If we run LSB with partition \mathcal{P} for $K \geq \log_\gamma (\varepsilon(1 - \gamma))$ iterations, then the algorithm returns policy $\varphi = \langle \mu, \Sigma \rangle$ such that

$$
\| V^*_M - V^\varphi_M \|_\infty \leq \frac{m \eta_{\mathcal{P}}}{(1 - \gamma)^2} + \varepsilon ,
$$

where m is the number of classes in \mathcal{P}.

- LSB learns a near-optimal policy
Experiment: Puddle World

Goal

Average Cost for Different Partitions

Optimal Policy

Average Cost

1x1 2x2 3x3 4x4

0 50 100 150 200
Experiments: Puddle World
Experiments: Pinball

- Maze-world
- More complex dynamics
- 4 dimensional state space

![Graph showing average reward over iterations](image)

![Map of the Pinball Maze-world](image)
Experiments: Pinball

- Pinball-world
- Sharp obstacles, non-linear dynamics at obstacle edges
- 4 dimensional state space
Conclusion

- Monolithic Approach is not feasible for many real-world problems
- Decomposing the task and iteratively learning skills allows us to scale
- **We provide the first theoretical convergence guarantees for skill learning in a continuous state environment**
 - Skills *work together*
 - Skill learning requires *iterative improvements*
The research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.306638.
For Further Reading I

Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning.

G. Konidaris, A. Barto.
Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining