High Dimensional Classification with Deep Networks

Joan Bruna, Stéphane Mallat, Edouard Oyallon, Laurent Sifre

École Normale Supérieure
www.di.ens.fr/data
• Estimate a label $y(x)$ of $x \in \mathbb{R}^d$ given examples $\{x_i, y_i\}_i$

• In high dimension $\|x - x'\|$ is not a good similarity measure

• Compute $\Phi x \in \mathbb{R}^D$ so that $\|\Phi x - \Phi x'\|$ measures similarity then a linear classifier applied to Φx is highly effective.

\[x \rightarrow \Phi \rightarrow \Phi x \rightarrow \text{Supervised Linear Classifier} \rightarrow \tilde{y}(x) \]

• How to define Φ? Should we learn it?
Genericity: one network (Alex net) yields state of the art on very different image classification problems.
Overview of Outrageous Claims

- No need to learn deep net for structured signals (images) just wavelet filters derived from geometry.

- Deep wavelet networks are signal coders.

- One can learn physical interactions: quantum chemistry.
Image Metrics

- Low-dimensional "geometric shapes"

\[
x(u) \quad x'(u)
\]

\[
\begin{array}{cccc}
3 & 3 & 5 & 5
\end{array}
\]

Deformation metric: Grenander, Trouvé, Younes

Deformation: \(D_\tau x(u) = x(u - \tau(u)) \)

\[
\Delta(x, x') \sim \min_{\tau} \| D_\tau x - x' \| + \| \nabla \tau \|_\infty \| x \|
\]

Invariant to translations

diffeomorphism amplitude

High dimensional textures: ergodic stationary processes

What metric on stationary processes?

- Invariant to translations and stable to deformations
 \[\Delta(x, x') \leq \min_{\tau} \| D_\tau x - x' \| + \| \nabla \tau \|_\infty \| x \| \]

Reverse inequality is wrong

- \(\Delta(x', x) = 0 \) for realisations of a "same stationary process"
Image Geometry and Metric

- High dimensional "structured" images

What metric on images?

- Invariant to translations and stable to deformations

- What else?
Embedding: find an equivalent Euclidean metric

\[\| \Phi x - \Phi x' \| \sim \Delta(x, x') \]

with

\[\Delta(x, x') \leq \min_{\tau} \| D_\tau x - x' \| + \| \nabla \tau \|_\infty \| x \| \]

Equivalent conditions on \(\Phi \):

- **Stable in \(L^2 \):** \(D_\tau = Id \) \(\Rightarrow \) \(\| \Phi x - \Phi x' \| \leq C \| x - x' \| \)

- **Lipschitz stable** to diffeomorphisms

\[x' = D_\tau x \ \Rightarrow \ \| \Phi D_\tau x - \Phi x \| \leq C \| \nabla \tau \|_\infty \| x \| \]

\(\Rightarrow \) Invariance to translation

Failure of classical math invariants: Fourier, canonical...
Wavelet Transform of Images

- Complex wavelet: \(\psi(t) = g(t) \exp i \xi t \), \(t = (t_1, t_2) \)

- Rotated and dilated: \(\psi_\lambda(t) = 2^{-j} \psi(2^{-j} r_\theta t) \) with \(\lambda = (2^j, \theta) \)

- Wavelet transform: \(Wx = \begin{pmatrix} x \ast \phi_2^J(t) \\ x \ast \psi_\lambda(t) \end{pmatrix} \quad \lambda \leq 2^J \)

- Preserves norm: \(\|Wx\|^2 = \|x\|^2 \)
Fast Wavelet Transform

\[|W_1| \]

\[|x \ast \psi_{2^1, \theta}| \]

\[2^0 \]

\[2^1 \]

\[2^J \]

Scale

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each set of parameters, we show, from left to right, the gaussian window \(\phi_J \), the Morlet wavelets \(\psi_{\theta, j} \), and the associated Littlewood-Paley sum \(A(\omega) \). When the number of scales \(J \) increases, so does the width of the low pass wavelet \(\phi_J \). When the number of orientations \(C \) increases or when the number of scales per octave \(Q \) decreases, the Morlet wavelets become more elongated in the direction perpendicular to the orientation, and hence have an increased angular sensitivity.
Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each set of parameters, we show, from left to right, the gaussian window ϕ_J, the Morlet wavelets $\psi_{2^j, \theta}$, and the associated Little Wood-Paley sum $A(\omega)$. When the number of scales J increases, so does the width of the low pass wavelet ϕ_J. When the number of orientations C increases or when the number of scales per octave Q decreases, the Morlet wavelets become more elongated in the direction perpendicular to their orientation, and hence have an increased angular sensitivity.
First wavelet transform

\[|W_1|_x = \left(\begin{array}{c} x * \phi_{2J} \\ x * \psi_{\lambda_1}^{1} \\ x * \psi_{\lambda_1}^{1} \end{array} \right) \lambda_1 \]

Modulus improves invariance:

\[|x * \psi_{\lambda_1}^{1} (t)| * \phi_{2J} (t) \]

Second wavelet transform modulus

\[|W_2|_x = \left(\begin{array}{c} |x * \psi_{\lambda_1}^{1} | * \phi_{2J} (t) \\ |x * \psi_{\lambda_1}^{1} | \psi_{\lambda_2} (t) \end{array} \right) \lambda_2 \]
Wavelet Scattering Network

\[S_J x = |W_J| \cdots |W_4| |W_3| |W_2| |W_1| x \]
Scattering Neuronal Network

\[|W_1| \]

\[x \star \psi_{\lambda_1}(t) \quad x \star \psi_{\lambda_2}(t) \quad x \star \psi_{\lambda_3}(t) \quad x \star \psi_{\lambda_4}(t) \]
Scattering Neuronal Network

\[|W_1| \]

\[|x * \psi_{\lambda_1} * \phi_{2J}| \]

\[|W_2| \]

\[||x * \psi_{\lambda_1} * \psi_{\lambda_2}(t)|| \]
Scattering Neuronal Network

\[|W_1| \]

\[|x \ast \psi_{\lambda_1} \ast \phi_{2^j}| \]

\[|W_2| \]

\[||x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \phi_{2^j}|| \]

\[|W_3| \]

\[|||x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \psi_{\lambda_3}||| \]
Wavelet Scattering

Scattering operator:

\[S_J x = \begin{pmatrix} x \ast \phi_{2^J} \\ |x \ast \psi_{\lambda_1}| \ast \phi_{2^J} \\ ||x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \phi_{2^J} \\ |||x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \psi_{\lambda_3} \ast \phi_{2^J} \\ \vdots \end{pmatrix} \xrightarrow{J \to \infty} \begin{pmatrix} \int x(u)du \\ ||x \ast \psi_{\lambda_1}| \ast \psi_{\lambda_2}| \ast \phi_{2^J} \\ |||x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \psi_{\lambda_3} \ast \phi_{2^J} \\ \vdots \end{pmatrix} \]

Theorem: The total energy of coefficients converge to 0 as the depth (number of modulus) increases.
Scattering Properties

\[S_J x = \begin{pmatrix} x \ast \phi_{2J} \\ |x \ast \psi_{\lambda_1} \ast \phi_{2J}| \\ |x \ast \psi_{\lambda_1} \ast \psi_{\lambda_2} \ast \phi_{2J}| \\ |x \ast \psi_{\lambda_2} \ast \psi_{\lambda_2} \ast \psi_{\lambda_3} \ast \phi_{2J}| \\ \vdots \end{pmatrix} = \ldots |W_3| |W_2| |W_1| \ x \lambda_1, \lambda_2, \lambda_3, \ldots \]

Theorem: For appropriate wavelets, a scattering is

1. **contractive** \(\| S_J x - S_J y \| \leq \| x - y \| \) (\(L^2 \) stability)
2. **preserves norms** \(\| S_J x \| = \| x \| \)
3. **stable to deformations** \(D_\tau x(u) = x(u - \tau(u)) \)

\[\| S_J D_\tau x - S_J x \| \leq C \left(\| \nabla \tau \|_\infty \| x \| + 2^{-J} \| \tau \|_\infty \right) \]

\[J \to \infty \| S x - S x' \| \leq C \left(\min_\tau \| x - D_\tau x' \| + \| \nabla \tau \|_\infty \| x \| \right) \]
Image Classification

\[x \rightarrow S_J x \rightarrow \text{Linear Classif. SVM} \rightarrow y \]

MNIST: 6 \(10^4\) chiffres

0.4% errors
\[2^J = 2^3 \]

CUREt
61 classes

0.2% errors
\[2^J = \text{image size} \]
The scattering transform of a stationary process $X(t)$

$$S_J X = \begin{pmatrix}
X \ast \phi_{2J} \\
|X \ast \psi_{\lambda_1}| \ast \phi_{2J} \\
||X \ast \psi_{\lambda_1}| \ast \psi_{\lambda_2}| \ast \phi_{2J} \\
|||X \ast \psi_{\lambda_2}| \ast \psi_{\lambda_2}| \ast \psi_{\lambda_3}| \ast \phi_{2J} \\
... \\
\end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, ...}$$

is a low-variance estimator of the scattering moments of $X(t)$

$$\overline{S}X = \begin{pmatrix}
E(X) \\
E(|X \ast \psi_{\lambda_1}|) \\
E(||X \ast \psi_{\lambda_1}| \ast \psi_{\lambda_2}|) \\
E(|||X \ast \psi_{\lambda_2}| \ast \psi_{\lambda_2}| \ast \psi_{\lambda_3}|) \\
... \\
\end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, ...}$$

and $S_X \xrightarrow{J \to \infty} \overline{S}X$ if X is ergodic.

- But does $\overline{S}X$ "characterize" X?
Adapt Convolutions to Invariants

Laurent Sifre

Translation

\[x(t) \rightarrow |W_1| \rightarrow |x \ast \psi_{j,\theta}(t)| = x_1(j, \theta, t) \rightarrow |W_2| \rightarrow |x_1(j, \theta, .) \ast \psi_j(t)| \]

1st order translation

\[W_2 \text{ computes wavelet convolutions along } (t_1, t_2) \]

4D space

\[t = (t_1, t_2) \]

\[\theta \]
Rotation-Translation Invariance

Laurent Sifre

Translation

1st order

Roto-translation

W_2 computes wavelet convolutions along (t_1, t_2, θ)
Scalo-Roto-Translation Invariance

Laurent Sifre

\[x(t) \xrightarrow{\text{translation}} |W_1| \xrightarrow{x \ast \psi_{j,\theta}(t)} |x \ast \psi_{j,\theta}(t)| = x_1(j, \theta, t) \xrightarrow{1\text{st order}} |W_2| \xrightarrow{|x_1 \ast \overline{\psi}_{j',\nu}(j, \theta, t)|} \]

\(W_2 \) computes wavelet convolutions along \((t_1, t_2, \theta, j)\)

4D space
UIUC database: 25 classes

Scattering classification errors

<table>
<thead>
<tr>
<th>Training</th>
<th>Translation</th>
<th>Transl + Rotation</th>
<th>+ Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20 %</td>
<td>2%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
Complex Image Classification

CalTech 101 data-basis:

<table>
<thead>
<tr>
<th>Data Basis</th>
<th>2012</th>
<th>Deep-Net</th>
<th>Scat.-1</th>
<th>Scat.-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalTech-101</td>
<td>80%</td>
<td>85%</td>
<td>50%</td>
<td>80%</td>
</tr>
<tr>
<td>CalTech-256</td>
<td>50%</td>
<td>70%</td>
<td>30%</td>
<td>50%</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>80%</td>
<td>90%</td>
<td>55%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Classification Accuracy \[2^J = 2^5\]
Complex Image Classification

CalTech 101 data-basis:

\[
\begin{align*}
S_J x & \quad \text{Roto-Trans.} \\
\text{Linear Classif.} & \quad y
\end{align*}
\]

Classification Accuracy \(2^J = 2^5\)

<table>
<thead>
<tr>
<th>Data Basis</th>
<th>2012</th>
<th>Deep-Net</th>
<th>Scat.-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CalTech-101</td>
<td>80%</td>
<td>85%</td>
<td>80%</td>
</tr>
<tr>
<td>CalTech-256</td>
<td>50%</td>
<td>70%</td>
<td>50%</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>80%</td>
<td>90%</td>
<td>80%</td>
</tr>
</tbody>
</table>
Given $S_J x$ we want to compute \tilde{x} such that:

$$S_J \tilde{x} = \begin{pmatrix} \tilde{x} \ast \phi_{2^J} \\ |\tilde{x} \ast \psi_{\lambda_1} | \ast \phi_{2^J} \\ \vdots \\ || \tilde{x} \ast \psi_{\lambda_1} \ast \ldots \ast \psi_{\lambda_m} \ast \phi_{2^J} \end{pmatrix}_{\lambda_1, \ldots, \lambda_m} = \begin{pmatrix} x \ast \phi_{2^J} \\ |x \ast \psi_{\lambda_1} | \ast \phi_{2^J} \\ \vdots \\ || x \ast \psi_{\lambda_1} \ast \ldots \ast \psi_{\lambda_m} \ast \phi_{2^J} \end{pmatrix}_{\lambda_1, \ldots, \lambda_m} = S_J x$$

with $||\tilde{x}||$ minimum. Non convex optimisation problem.

For $m = 1$ and $2^J = \infty$, minimize $||\tilde{x}||$ subject to:

$$\int \tilde{x}(u) \, du = \int x(u) \, du$$

$$\forall \lambda_1 \ , \ || \tilde{x} \ast \psi_{\lambda_1} ||_1 = || x \ast \psi_{\lambda_1} ||_1$$

If $x(u)$ is a Dirac, or a straight edge or a sinusoid then \tilde{x} is equal to x up to a translation.
With a gradient descent algorithm:

Original images of N^2 pixels:

$m = 1$, $2^J = N$: reconstruction from $O(\log_2 N)$ scattering coeff.

$m = 2$, $2^J = N$: reconstruction from $O(\log_2^2 N)$ scattering coeff.
Gaussian process model with same second order moments

\(m = 2, 2^J = N: \) reconstruction from \(O(\log_2^2 N) \) scattering coeff.
Multiscale Scattering Reconstructions

Original Images
N^2 pixels

Scattering Reconstruction
$2^J = 16$
$1.4 \times N^2$ coeff.

$2^J = 32$
$0.5 \times N^2$ coeff.

$2^J = 64$

$2^J = 128 = N$
Scattering Reconstructions

Original Images

Scat-2. Reconstr.

$2^J = 32$
Energy of d interacting bodies:

Can we learn the interaction energy $f(x)$ of a system with $x = \{\text{positions, values}\}$?
• Classic energy of d interacting bodies:

If $x(u) = \sum_{k=1}^{d} q_k \delta(u - p_k)$ then $f(x) = \sum_{k=1}^{d} \sum_{k'=1}^{d} \frac{q_k q_{k'}}{|p_k - p_{k'}|^{\beta}}$

Each particle interacts with $O(\log d)$ groups

Theorem: For any $\epsilon > 0$ there exists wavelets with

$$f(x) = \sum_{m=0}^{M} \sum_{\lambda_1, \ldots, \lambda_m} \alpha(\lambda_1, \ldots, \lambda_m) S^2 x(\lambda_1, \ldots, \lambda_m)(1 + \epsilon)$$
Quantum Chemistry

- Complex orbital interactions: no analytical energy \(f(x) \).
 Invariant to translations, rotations, stable to deformations.
- Data basis \(\{ x_i, f(x_i) \}_i \) of 700 2D molecules (about 20 atoms).
- Best \(M \)-term scattering approximation \(f_M \) of \(f \):

\[
\log \| f - f_M \| \approx C M^{-1/2} \ll M^{-1/d}
\]

\[
\| f_M - f \| \approx C M^{-1/2} \ll M^{-1/d}
\]

where the \(\phi_n(x) \) is a 1st or 2nd order term.

\[
M = 80 \quad \| f - f_M \| = 9 \text{kcal/mole}
\]

\(\log M \)
Conclusion

• Do we need to learn deep net filters?

• Can we analyse geometry in Euclidean spaces?

• How much physics can we learn and why?

Looking for Post-Doc!

www.di.ens.fr/data/scattering