Theano: a Fast Python Library for Modelling and Training

Pascal Lamblin
Laboratoire d’Informatique des Systèmes Adaptatifs
Département d’informatique et de recherche opérationelle
Université de Montréal, Canada

September 10th, TCMM 2014, Leuven
Overview

Motivation

Basic Usage

Graph definition and Syntax

Strong typing

Differences from Python/NumPy

Graph Transformations

Substitution and Cloning

Gradient

Shared variables

Make it fast!

Optimizations

Code Generation

GPU

Advanced Topics

Looping: the scan operation

Extending Theano

Features Coming Soon
Mathematical symbolic expression compiler

- Easy to define expressions
 - Expressions mimic NumPy’s syntax and semantics
- Possible to manipulate those expressions
 - Substitutions
 - Gradient, R operator
 - Stability optimizations
- Fast to compute values for those expressions
 - Speed optimizations
 - Use fast back-ends (CUDA, BLAS, custom C code)
- Tools to inspect and check for correctness
Current status

- Mature: Theano has been developed and used since January 2008 (6.5 yrs old)
- Driven over 100 research papers
- Good user documentation
- Active mailing list with participants worldwide
- Core technology for a few Silicon-Valley start-ups
- Many contributors from different places
- Used to teach many university classes
- Has been used for research at Google and Yahoo.

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/
Theano defines a **language**, a **compiler**, and a **library**.

- Define a symbolic expression
- Compile a function that can compute values
- Execute that function on numeric values
Defining an expression

- Symbolic, strongly-typed inputs
  ```python
  import theano
  from theano import tensor as T
  x = T.vector('x')
  W = T.matrix('W')
  b = T.vector('b')
  ```

- NumPy-like syntax to build expressions
  ```python
  dot = T.dot(x, W)
  out = T.nnet.sigmoid(dot + b)
  ```
Graph visualization (1)

depbugprint(dot)
dot [@A] ''
 |x [@B]
 |W [@C]

depbugprint(out)
sigmoid [@A] ''
 |Elemwise{add,no_inplace} [@B] ''
 |dot [@C] ''
 | |x [@D]
 | |W [@E]
 |b [@F]
Compiling a Theano function

Build a callable that compute outputs given inputs

```python
f = theano.function(inputs=[x, W], outputs=dot)
g = theano.function([x, W, b], out)
h = theano.function([x, W, b], [dot, out])
i = theano.function([x, W, b], [dot + b, out])
```
theano.printing.debugprint(f)
CGemv{inplace} [@A] ' ' 3
| Alloc [@B] ' ' 2
| | TensorConstant{0.0} [@C]
| | Shape_i{1} [@D] ' ' 1
| | W [@E]
| TensorConstant{1.0} [@F]
| InplaceDimShuffle{1,0} [@G] ' W.T' 0
| | W [@E]
| x [@H]
| TensorConstant{0.0} [@C]

theano.printing.pydotprint(f)

theano.printing.debugprint(g)
Elemwise{ScalarSigmoid}[(0, 0)] [@A] ' ' 2
| CGemv{no_inplace} [@B] ' ' 1
| b [@C]
| TensorConstant{1.0} [@D]
| InplaceDimShuffle{1,0} [@E] ' W.T' 0
| | W [@F]
| x [@G]
| TensorConstant{1.0} [@D]

theano.printing.pydotprint(g)
pydotprint(f)
pydotprint(g)
pydotprint(h)
Executing a Theano function

Call it with numeric values

```python
import numpy as np
np.random.seed(42)
W_val = np.random.randn(4, 3)
x_val = np.random.rand(4)
b_val = np.ones(3)

f(x_val, W_val)
# -> array([[ 1.79048354,  0.03158954, -0.26423186]])

g(x_val, W_val, b_val)
# -> array([[ 0.9421594 ,  0.73722395,  0.67606977]])

h(x_val, W_val, b_val)
# -> [array([[ 1.79048354,  0.03158954, -0.26423186]]),
#      array([[ 0.9421594 ,  0.73722395,  0.67606977]])]

i(x_val, W_val, b_val)
# -> [array([[ 2.79048354,  1.03158954,  0.73576814]]),
#      array([[ 0.9421594 ,  0.73722395,  0.67606977]])]
```
Overview
 Motivation
 Basic Usage

Graph definition and Syntax
 Strong typing
 Differences from Python/NumPy

Graph Transformations
 Substitution and Cloning
 Gradient
 Shared variables

Make it fast!
 Optimizations
 Code Generation
 GPU

Advanced Topics
 Looping: the scan operation
 Extending Theano
 Features Coming Soon
Strong typing

- All Theano variables have a type
- Different categories of types. Most used:
 - `TensorType` for Numpy ndarrays
 - `CudaNdarrayType` for CUDA arrays
 - `Sparse` for scipy.sparse matrices
- `ndim`, `dtype`, `broadcastable pattern` are part of the type
- `shape` and `memory layout` (strides) are **not**
Broadcasting tensors

- Implicit replication of arrays along broadcastable dimensions
- Broadcastable dimensions will always have length 1
- Such dimensions can be added to the left

```python
r = T.row('r')
print r.broadcastable  # (True, False)
c = T.col('c')
print c.broadcastable  # (False, True)

f = theano.function([r, c], r + c)
print f([[1, 2, 3], [.1, .2]])
```
No side effects

Create new variables, cannot *change* them

- a += 1 works, returns new variable and re-assign
- a[:] += 1, or a[:] = 0 do **not** work (the `__setitem__` method cannot return a new object)
- a = T.inc_subtensor(a[:], 1) or a = T.set_subtensor(a[:], 0)
- This will create a new variable, and re-assign a to it
- Theano will figure out later if it can use an in-place version

Exceptions:

- The Print() Op
- The Assert() Op
- You have to re-assign (or use the returned value)
- These can disrupt some optimizations
Python keywords

We cannot redefine Python’s keywords: they affect the flow when building the graph, not when executing it.

- `if var:` will always evaluate to `True`. Use `theano.ifelse.ifelse(var, expr1, expr2)`
- `for i in var:` will not work if `var` is symbolic. If `var` is numeric: loop unrolling. You can use `theano.scan`.
- `len(var)` cannot return a symbolic shape, you can use `var.shape[0]`
- `print` will print an identifier for the symbolic variable, there is a `Print()` operation
Overview
 Motivation
 Basic Usage

Graph definition and Syntax
 Strong typing
 Differences from Python/NumPy

Graph Transformations
 Substitution and Cloning
 Gradient
 Shared variables

Make it fast!
 Optimizations
 Code Generation
 GPU

Advanced Topics
 Looping: the scan operation
 Extending Theano
 Features Coming Soon
The givens keyword

Substitution at the last moment, when compiling a function

```python
x_ = T.vector('x_')
x_n = (x_ - x_.mean()) / x_.std()
f_n = theano.function([x_], dot, givens={x: x_n})
f_n(x_val)
# -> array([ 1.90651511,  0.60431744, -0.64253361])
```
Cloning with replacement

Useful when building the expression graph

dot_n, out_n = theano.clone([dot, out], replace={x: (x - x.mean()) / x.std()})
f_n = theano.function([x], dot_n)
f_n(x_val)
-> array([1.90651511, 0.60431744, -0.64253361])
The back-propagation algorithm

Application of the chain-rule for functions from \mathbb{R}^N to \mathbb{R}.

- $C : \mathbb{R}^N \to \mathbb{R}$
- $f : \mathbb{R}^M \to \mathbb{R}$
- $g : \mathbb{R}^N \to \mathbb{R}^M$
- $C(x) = f(g(x))$
- $\frac{\partial C}{\partial x} \bigg|_x = \frac{\partial f}{\partial g} \bigg|_{g(x)} \cdot \frac{\partial g}{\partial x} \bigg|_x$

The whole $M \times N$ Jacobian matrix $\frac{\partial g}{\partial x} \bigg|_x$ is not needed.

We only need $\nabla g_x : \mathbb{R}^M \to \mathbb{R}^N$, $v \mapsto v \cdot \frac{\partial g}{\partial x} \bigg|_x$
Using theano.grad

```python
y = T.vector('y')
C = ((out - y) ** 2).sum()
dC_dW = theano.grad(C, W)
dC_db = theano.grad(C, b)
# or dC_dW, dC_db = theano.grad(C, [W, b])
```

- dC_dW and dC_db are symbolic expressions, like W and b
- There are no numerical values at this point
Using the gradients

- The symbolic gradients can be used to build a Theano function
  ```python
cost_and_grads = theano.function([x, W, b, y], [C, dC_dW, dC_db])
y_val = np.random.uniform(3)
print cost_and_grads(x_val, W_val, b_val, y_val)
```
- They can also be used to build new expressions
  ```python
  upd_W = W - 0.1 * dC_dW
  upd_b = b - 0.1 * dC_db
  cost_and_upd = theano.function([x, W, b, y], [C, upd_W, upd_b])
  print cost_and_upd(x_val, W_val, b_val, y_val)
  ```
Update values

Simple ways to update values

\[
C_{\text{val}}, \ dC_{\text{dW}_{\text{val}}}, \ dC_{\text{db}_{\text{val}}} = \text{cost_and_grads}(x_{\text{val}}, W_{\text{val}}, b_{\text{val}}, y_{\text{val}}) \\
W_{\text{val}} \leftarrow 0.1 \times dC_{\text{dW}_{\text{val}}} \\
b_{\text{val}} \leftarrow 0.1 \times dC_{\text{db}_{\text{val}}} \\
\]

\[
C_{\text{val}}, W_{\text{val}}, b_{\text{val}} = \text{cost_and_upd}(x_{\text{val}}, W_{\text{val}}, b_{\text{val}}, y_{\text{val}}) \\
\]

- Cumbersome
- Inefficient: memory, GPU transfers
Shared variables

- Symbolic variables, with a value associated to them
- The value is persistent across function calls
- The value is shared among all functions
- The variable has to be an input variable
- The variable is an implicit input to all functions using it
Using shared variables

```python
x = T.vector('x')
y = T.vector('y')
W = theano.shared(W_val)
b = theano.shared(b_val)
out = T.nnet.sigmoid(dot + b)
print f(x_val)
# [ 1.79048354  0.03158954 -0.26423186]
print g(x_val)
# [ 0.9421594  0.73722395  0.67606977]
```

- Use `W.get_value()` and `W.set_value()` to access the value later
Updating shared variables

C = ((out - y) ** 2).sum()
dC_dW, dC_db = theano.grad(C, [W, b])
upd_W = W - 0.1 * dC_dW
upd_b = b - 0.1 * dC_db

cost_and_perform_updates = theano.function(
 inputs=[x, y],
 outputs=C,
 updates=[(W, upd_W),
 (b, upd_b)])

- Variables \(W\) and \(b\) are **implicit inputs**
- Expressions \(\text{upd}_W\) and \(\text{upd}_b\) are **implicit outputs**
- All outputs, including the update expressions, are computed **before** the updates are performed
Overview
 Motivation
 Basic Usage

Graph definition and Syntax
 Strong typing
 Differences from Python/NumPy

Graph Transformations
 Substitution and Cloning
 Gradient
 Shared variables

Make it fast!
 Optimizations
 Code Generation
 GPU

Advanced Topics
 Looping: the scan operation
 Extending Theano
 Features Coming Soon

Optimizations
 Code Generation
 GPU
Graph optimizations

An optimization replaces a part of the graph with different nodes
- The types of the replaced nodes have to match

Different goals for optimizations:
- Merge equivalent computations
- Simplify expressions: x/x becomes 1
- Numerical stability: Gives the right answer for “$\log(1 + x)$” even if x is really tiny.
- Insert in-place and destructive versions of operations
- Use specialized, high-performance versions (Elemwise loop fusion, GEMV, GEMM)
- Shape inference
- Constant folding
- Transfer to GPU
Enabling/disabling optimizations

Trade-off between compilation speed, execution speed, error detection. Different modes govern how much optimizations are applied

- **FAST_RUN**: default, make the runtime as fast as possible, launching overhead. Includes moving computation to GPU if a GPU was selected
- **FAST_COMPILE**: minimize launching overhead, around NumPy speed
- **DEBUG_MODE**: checks and double-checks everything, extremely slow
- Enable and disable particular optimizations or sets of optimizations
- Can be done globally, or for each function
C code for Ops

- Each operator can define C code computing the outputs given the inputs
- Otherwise, fall back to a Python implementation

How does this work?
- In Python, build a string representing the C code for a Python module
 - Stitching together code to extract data from Python structure,
 - Takes into account input and output types (ndim, dtype, ...)
 - String substitution for names of variables
- That module is compiled by g++
- The compiled module gets imported in Python
- Versioned cache of generated and compiled C code

For GPU code, same process, using CUDA and nvcc instead.
The C virtual machine (CVM)

A runtime environment, or VM, that calls the functions performing computation of different parts of the function (from inputs to outputs)

- Avoids context switching between C and Python
- Data structure containing
 - Addresses of inputs and outputs of all nodes (intermediate values)
 - Ordering constraints
 - Pointer to functions performing the computations
 - Information on what has been computed, and needs to be computed
- Set in advance from Python when compiling a function
- At runtime, if all operations have C code, calling the pointers will be fast
- Also enables lazy evaluation (for if else for instance)
Using the GPU

We want to make the use of GPUs as transparent as possible, but

- Currently limited to float32 dtype
- Not easy to interact in Python with CudaNdarrays

Select GPU by setting the device flag to 'gpu' or 'gpu{0,1,2,...}'.

- All float32 shared variables will be created in GPU memory
- Enables optimizations moving supported operations to GPU

You want to make sure to use float32

- 'floatX' is the default type of all tensors and sparse matrices.
- By default, aliased to 'float64' for double precision on CPU
- Can be set to 'float32' by a configuration flag
- You can always explicitly use T.fmatrix() or T.matrix(dtype='float32')
Configuration flags

Configuration flags can be set in a couple of ways:

- THEANO_FLAGS=device=gpu0, floatX=float32 in the shell
- In Python:
  ```python
tensoflow.config.device = 'gpu0'
tensoflow.config.floatX = 'float32'
```
- In the .theanorc configuration file:
  ```
  [global]
  device = gpu0
  floatX = float32
  ```
Overview
 Motivation
 Basic Usage

Graph definition and Syntax
 Strong typing
 Differences from Python/NumPy

Graph Transformations
 Substitution and Cloning
 Gradient
 Shared variables

Make it fast!
 Optimizations
 Code Generation
 GPU

Advanced Topics
 Looping: the scan operation
 Extending Theano
 Features Coming Soon
Overview

Symbolic looping

- Can perform map, reduce, reduce and accumulate, ...
- Can access outputs at previous time-step, or further
- Symbolic number of steps
- Symbolic stopping condition (behaves as do ... while)
- Actually embeds a small Theano function
- Gradient through scan implements backprop through time
- Can be transferred to GPU
Scan Examples: Loop with accumulation

```
k = T.iscalar("k")
A = T.vector("A")

# Symbolic description of the result
result, updates = theano.scan(fn=lambda prior_result, A: prior_result * A,
                               outputs_info=T.ones_like(A),
                               non_sequences=A,
                               n_steps=k)

# We only care about A**k, but scan has provided us with A**1 through A**k.
# Discard the values that we don’t care about. Scan is smart enough to
# notice this and not waste memory saving them.
final_result = result[-1]

# compiled function that returns A**k
power = theano.function(inputs=[A, k], outputs=final_result, updates=updates)

print power(range(10), 2)
# [  0.        1.        9.       25.       49.       64.       81.        ]
print power(range(10), 4)
# [ 0.00000000e+00  1.00000000e+00  1.60000000e+01  8.10000000e+01
#  2.56000000e+02  6.25000000e+02  1.29600000e+03  2.40100000e+03
#  4.09600000e+03  6.56100000e+03]
```
The easy way: Python

Easily wrap Python code, specialized library with Python bindings (PyCUDA, ...)

```python
import theano
import numpy
from theano.compile.ops import as_op

def infer_shape_numpy_dot(node, input_shapes):
    ashp, bshp = input_shapes
    return [ashp[:-1] + bshp[-1:]]

@as_op(itypes=[theano.tensor.fmatrix, theano.tensor.fmatrix],
        otypes=[theano.tensor.fmatrix], infer_shape=infer_shape_numpy_dot)
def numpy_dot(a, b):
    return numpy.dot(a, b)
```

- Overhead of Python call could be slow
- To define the gradient, have to actually define a class deriving from Op, and define the grad method.

3D convolution using FFT on GPU was recently implemented that way.
The hard way: C code

- Understand the C-API of Python / NumPy / CudaNdarray
- Handle arbitrary strides (or use GpuContiguous)
- Manage refcounts for Python
- No overhead of Python function calls, or from the interpreter (if garbage collection is disabled)

New contributors recently wrapped Caffe to perform convolutions using GEMM on GPU with it.
What to expect in the near future

- New GPU backend, with arrays of all dtypes, for CUDA and OpenCL
- Support for multiple GPUs in the same function
- Execution of un-optimized graph on GPU (quicker compile time)
- Serialization/deserialization of optimized function graphs
- Easier way of writing C code for Ops
- Serialize GPU shared variables as ndarrays, for loading on a machine with no GPU
- Faster implementation of convolution / cross-correlation on CPU and GPU
Acknowledgements

- All people working or having worked at the LISA lab, especially Theano contributors
 - James Bergstra, Olivier Breuleux, Frédéric Bastien, Yoshua Bengio, Arnaud Bergeron, Razvan Pascanu, David Warde-Farley, Ian Goodfellow, Joseph Turian, and many more
- Compute Canada, RQCHP, NSERC, and Canada Research Chairs for providing funding or access to compute resources.
- Organizers and participants to TCMM 2014
Thanks for your attention

Questions, comments, requests?