Sketching as a Tool for Numerical Linear Algebra

David Woodruff
IBM Almaden
Talk Outline

- Exact Regression Algorithms
- Sketching to speed up Least Squares Regression
- Sketching to speed up Least Absolute Deviation (l_1) Regression
- Sketching to speed up Low Rank Approximation
Regression

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law $V = R \cdot I$
- Find linear function that best fits the data
Regression

Standard Setting

- One measured variable \(b \)
- A set of predictor variables \(a_1, \ldots, a_d \)
- Assumption:
 \[
 b = x_0 + a_1 x_1 + \ldots + a_d x_d + \epsilon
 \]
- \(\epsilon \) is assumed to be noise and the \(x_i \) are model parameters we want to learn
- Can assume \(x_0 = 0 \)
- Now consider \(n \) observations of \(b \)
Regression analysis

Matrix form

Input: $n \times d$-matrix A and a vector $b = (b_1, \ldots, b_n)$
- n is the number of observations; d is the number of predictor variables

Output: x^* so that Ax^* and b are close

- Consider the over-constrained case, when $n \gg d$
- Can assume that A has full column rank
Regression analysis

Least Squares Method
- Find x^* that minimizes $|Ax-b|_2^2 = \sum (b_i - \langle A_{i^*}, x \rangle)^2$
- A_{i^*} is i-th row of A
- Certain desirable statistical properties
- Closed form solution: $x = (AT A)^{-1} A^T b$

Method of least absolute deviation (l_1-regression)
- Find x^* that minimizes $|Ax-b|_1 = \sum |b_i - \langle A_{i^*}, x \rangle|$
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

Time complexities are at least n^*d^2, we want better!
Talk Outline

- Exact Regression Algorithms

- Sketching to speed up Least Squares Regression

- Sketching to speed up Least Absolute Deviation (l_1) Regression

- Sketching to speed up Low Rank Approximation
Sketching to solve least squares regression

- How to find an approximate solution \(x \) to \(\min_x |Ax-b|_2 \)?

- **Goal:** output \(x' \) for which \(|Ax'-b|_2 \cdot (1+\varepsilon) \min_x |Ax-b|_2 \) with high probability

- Draw \(S \) from a \(k \times n \) random family of matrices, for a value \(k \ll n \)

- Compute \(S^*A \) and \(S^*b \)

- Output the solution \(x' \) to \(\min_{x'} |(SA)x-(Sb)|_2 \)
How to choose the right sketching matrix S?

- Recall: output the solution x' to $\min_{x'} |(SA)x-(Sb)|_2$
- Lots of matrices work
- S is $d/\epsilon^2 \times n$ matrix of i.i.d. Normal random variables
- Computing $S*A$ may be slow…
How to choose the right sketching matrix S? [S]

- S is a Johnson Lindenstrauss Transform

 - $S = P \cdot H \cdot D$

- D is a diagonal matrix with $+1$, -1 on diagonals

- H is the Hadamard transform

- P just chooses a random (small) subset of rows of $H \cdot D$

- $S \cdot A$ can be computed much much faster
Even faster sketching matrices [CW,MM,NN]

- CountSketch matrix

- Define $k \times n$ matrix S, for $k = \frac{d^2}{\epsilon^2}$

- S is really sparse: single randomly chosen non-zero entry per column

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Surprisingly, this works!
Talk Outline

- Exact Regression Algorithms
- Sketching to speed up Least Squares Regression
- Sketching to speed up Least Absolute Deviation (l_1) Regression
- Sketching to speed up Low Rank Approximation
Sketching to solve l_1-regression

- How to find an approximate solution x to $\min_x |Ax-b|_1$?

- **Goal:** output x' for which $|Ax'-b|_1 \cdot (1+\varepsilon) \min_x |Ax-b|_1$ with high probability

- **Natural attempt:** Draw S from a $k \times n$ random family of matrices, for a value $k << n$

- Compute $S*A$ and $S*b$

- Output the solution x' to $\min_{x'} |(SA)x-(Sb)|_1$

- Turns out this does not work!
Sketching to solve l_1-regression [SW]

- Why doesn’t outputting the solution x' to $\min_{x'} |(SA)x-(Sb)|_1$ work?

- Don’t know of $k \times n$ matrices S with small k for which if x' is solution to $\min_{x} |(SA)x-(Sb)|_1$ then $|Ax'-b|_1 \cdot (1+\epsilon) \min_{x} |Ax-b|_1$ with high probability

- Instead: can find an S so that $|Ax'-b|_1 \cdot (d \log d) \min_{x} |Ax-b|_1$

- S is a matrix of i.i.d. Cauchy random variables
Cauchy random variables

- Cauchy random variables not as nice as Normal (Gaussian) random variables
- They don’t have a mean and have infinite variance
- Ratio of two independent Normal random variables is Cauchy
Sketching to solve l_1-regression

- How to find an approximate solution x to $\min_x |Ax-b|_1$?

- Want x' for which if x' is solution to $\min_x |(SA)x-(Sb)|_1$, then $|Ax'-b|_1 \cdot (1+\epsilon) \min_x |Ax-b|_1$ with high probability

- For $d \log d \times n$ matrix S of Cauchy random variables:

 $|Ax'-b|_1 \cdot (d \log d) \min_x |Ax-b|_1$

- For this “poor” solution x', let $b' = Ax'-b$

- Might as well solve regression problem with A and b'
Sketching to solve l_1-regression

- **Main Idea**: Compute a QR-factorization of S^*A

- Q has orthonormal columns and $Q^*R = S^*A$

- A^*R^{-1} turns out to be a “well-conditioning” of original matrix A

- Compute A^*R^{-1} and sample $d^{3.5}/\varepsilon^2$ rows of $[A^*R^{-1}, b']$ where the i-th row is sampled proportional to its 1-norm

- Solve regression problem on the (rewighted) samples
Sketching to solve l_1-regression [MM]

- Most expensive operation is computing $S*A$ where S is the matrix of i.i.d. Cauchy random variables.

- All other operations are in the “smaller space”.

- Can speed this up by choosing S as follows:

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
\vdots \\
C_n
\end{bmatrix}
\]
Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose S as follows

- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{E_1} \\
\frac{1}{E_2} \\
\frac{1}{E_3} \\
\vdots \\
\frac{1}{E_n} \\
\end{bmatrix}
\]
Talk Outline

- Exact regression algorithms
- Sketching to speed up Least Squares Regression
- Sketching to speed up Least Absolute Deviation (l_1) Regression
- Sketching to speed up Low Rank Approximation
Low rank approximation

- A is an $n \times n$ matrix

- Typically well-approximated by low rank matrix
 - E.g., only high rank because of noise

- Want to output a rank k matrix A', so that
 \[|A-A'|_F \cdot (1+\epsilon) |A-A_k|_F, \]
 w.h.p., where $A_k = \arg\min_{\text{rank } k \text{ matrices } B} |A-B|_F$

- For matrix C, $|C|_F = (\sum_{i,j} C_{i,j}^2)^{1/2}$
Solution to low-rank approximation

- Given \(n \times n \) input matrix \(A \)
- Compute \(S \cdot A \) using a sketching matrix \(S \) with \(k \ll n \) rows. \(S \cdot A \) takes random linear combinations of rows of \(A \).

Most time-consuming step is computing \(S \cdot A \)

- \(S \) can be matrix of i.i.d. Normals
- \(S \) can be a Fast Johnson Lindenstrauss Matrix
- \(S \) can be a CountSketch matrix
Conclusion

- Gave fast sketching-based algorithms for
 - Least Squares Regression
 - Least Absolute Deviation (l_1) Regression
 - Low Rank Approximation

- Sketching also provides “dimensionality reduction”
 - Communication-efficient solutions for these problems