Weighted Spectral Learning and the Efficiency Sharpening algorithm

Michael Thon, Herbert Jaeger

Jacobs University Bremen

NIPS Workshop on Spectral Learning, Dec 10 2013
Who we are

- Michael Thon
 - PhD student of
- Herbert Jaeger:
 - **Observable operator models** (OOM) [Jaeger, 1998] = “observable representation for HMMs”

- Group:
 - Algebraic structure of models
 - Relation to **predictive state representations** (PSR) and **stochastic multiplicity automata** (SMA)
 - **Statistically efficient** learning algorithms

- Not:
 - Extension of models
 - Application to real-world problems
Outline

1. Basic Theory
2. Weighted spectral learning
3. Efficiency sharpening
\(f : \Sigma^* \to \mathbb{R} \)

\(\Sigma \) – finite alphabet
\(x, y, z \in \Sigma, \quad \bar{x}, \bar{y}, \bar{z} \in \Sigma^*, \quad \varepsilon \) – empty word

- **Stochastic process**
 - \(f(\varepsilon) = 1 \)
 - \(f(\bar{x}) = \sum_{z \in \Sigma} f(\bar{x}z) \)
 - \(f \geq 0 \)

- **Controlled stochastic process**
 - \(\Sigma = \Sigma_I \times \Sigma_O \)
 - \(f(\varepsilon) = 1 \)
 - \(\forall a \in \Sigma_I : f(\bar{x}) = \sum_{o \in \Sigma_o} f(\bar{x}ao) \)
 - \(f \geq 0 \)

- **Stochastic language**
 - \(f(\varepsilon) = 0 \)
 - \(\sum_{\bar{x} \in \Sigma^*} f(\bar{x}) = 1 \)
 - \(f \geq 0 \)
Sequential systems (SS) [Carlyle & Paz, 1971]

\[f_{\bar{x}}(y) := f(xy) \]
\[F = [f_{\bar{x}}(\bar{y})] - \text{Hankel matrix}^\top \quad \text{(columns indexed by } \bar{x} \in \Sigma^*) \]
\[\mathcal{F} := \text{span}\{f_{\bar{x}}\} \]

Then

- \(\tilde{\tau}_z : \mathcal{F} \rightarrow \mathcal{F}, \quad f_{\bar{x}} \mapsto f_{\bar{x}z} \)
- \(\tilde{\sigma} : \mathcal{F} \rightarrow \mathbb{R}, \quad f_{\bar{x}} \mapsto f(\bar{x}) \)

are well-defined linear operators on \(\mathcal{F} \), and

\[
f(\bar{x}) = \tilde{\sigma} \tilde{\tau}_{x_n} \cdots \tilde{\tau}_{x_1} f_\varepsilon \]

If \(\dim(\mathcal{F}) < \infty \), then – w.r.t. some basis of \(\mathcal{F} \) – we get a sequential system representation \(\mathcal{S} = \langle \sigma, \{\tau_z\}, \omega_\varepsilon \rangle \) for \(f \).
Properties of sequential systems S

- **Equivalence of sequential systems**
 - $S \cong S'$: $f_S = f_{S'}$
 - S is **minimal**: no equivalent SS of smaller dimension
 - Can minimize any S
 - For minimal SS, equivalence corresponds to a change of basis:
 for ρ non-singular: $\rho S = (\sigma \rho^{-1}, \{\rho \tau_z \rho^{-1}\}, \rho \omega_\varepsilon)$

- For minimal S, can find $\{\overline{y}_1, \ldots, \overline{y}_d\}$ s.t. $\{f_{\overline{y}_1}, \ldots, f_{\overline{y}_d}\}$ is a basis.

- Then
 - $\rho = \begin{pmatrix} \sigma \tau_{\overline{y}_1} \\ \vdots \\ \sigma \tau_{\overline{y}_d} \end{pmatrix}$ is non-singular
 - ρS is **interpretable**, i.e., states $\omega_x = \tau_x \omega_\varepsilon = \begin{pmatrix} f_x(\overline{y}_1) \\ \vdots \\ f_x(\overline{y}_d) \end{pmatrix}$.
OOMs, PSRs and SMA

A sequential system that represents a

- stochastic language
 - is a stochastic multiplicity automata (SMA)
 - generalizes probabilistic finite automata (PFA)

- stochastic process
 - is an observable operator model (OOM)
 - generalizes hidden Markov models (HMM)

- controlled stochastic process
 - is a transformed predictive state representation (TPSR)
 - is an input-output OOM (IO-OOM)
 - is a predictive state representation (PSR) if it is interpretable
 - generalizes partially observable Markov decision processes (POMDP)
 - Note: (T)PSRs consider set \(\{ m_y = \sigma \tau_y \} \) of projection functions.
Learning sequential systems from data

Given estimates $\hat{f}(x)$, find S such that $f_S \approx f$.

Recall:

$$\tilde{\tau}_z f_x = f_{xz}$$

- Gather estimates into Hankel matrix for sets $X, Y \subset \Sigma^*$:
 $$\hat{F} = \left[\hat{f}(xy) \right]_{y \in Y, x \in X}, \quad \hat{F}_z = \left[\hat{f}(xz) \right]_{y \in Y, x \in X}$$

1. Map columns to d-dimensional representation via matrix C

2. Solve $\hat{\tau}_z C\hat{F} = C\hat{F}_z$

 \[
 \text{and } \hat{\sigma} C\hat{F} = [\hat{f}(x)], \quad \hat{\omega}_\varepsilon = C[\hat{f}(y)]
 \]

 i.e., find Q such that $C\hat{F}Q$ is invertible, e.g., $Q = (C\hat{F})^\dagger$

 and set

 $$\hat{\tau}_z = C\hat{F}_z Q (C\hat{F}Q)^{-1}$$

 $$\hat{\sigma} = [\hat{f}(x)] Q (C\hat{F}Q)^{-1}$$

 $$\hat{\omega}_\varepsilon = C[\hat{f}(y)]$$

 “learning equations”

 [Kretzschmar, 2001]
Learning sequential systems from data

Given estimates $\hat{f}(\overline{x})$, find S such that $f_S \approx f$.

Recall:

$\tilde{\tau}_z f_{\overline{x}} = f_{\overline{x}z}$

- Gather estimates into Hankel matrix for sets $X, Y \subset \Sigma^*$:
 \[
 \hat{F} = \begin{bmatrix} \hat{f}(\overline{xy}) \end{bmatrix}_{\overline{y} \in Y, \overline{x} \in X}, \quad \hat{F}_z = \begin{bmatrix} \hat{f}(\overline{xz}y) \end{bmatrix}_{\overline{y} \in Y, \overline{x} \in X}
 \]

1. Map columns to d-dimensional representation via matrix C

2. Solve $\hat{\tau}_z C \hat{F} = C \hat{F}_z$ (and $\hat{\sigma} C \hat{F} = [\hat{f}(\overline{x})], \quad \hat{\omega}_\varepsilon = C[\hat{f}(\overline{y})]$)

i.e., find Q such that $C \hat{F} Q$ is invertible, e.g., $Q = (C \hat{F})^\dagger$

\[
\begin{align*}
\hat{\sigma} &= [\hat{f}(\overline{x})]Q(C \hat{F} Q)^{-1} \\
\hat{\tau}_z &= C \hat{F}_z Q(C \hat{F} Q)^{-1} \\
\hat{\omega}_\varepsilon &= C[\hat{f}(\overline{y})]
\end{align*}
\]

“learning equations”

[Kretzschmar, 2001]
Spectral learning [Rosencrantz & al., 2004]

1. Find best rank-d approximation to \hat{F} [via d-truncated SVD]:
 \[U_d S_d V_d^\top \approx \hat{F} \]
 - Map columns to d-dimensional representation via $C = U_d^\top$.
 - May select d via threshold on singular values.

2. Select $Q = (C\hat{F})^\dagger = V_d (S_d)^\dagger$, i.e., solve learning equations in least squares sense.

Note:
- Can alternatively compute SVD of $\hat{F}_i = [\hat{F} \hat{F}_{z_1} \ldots \hat{F}_{z_n}]$.
- This turns out to be equivalent to the “error controlling” algorithm:
 \[
 \begin{cases}
 Q = (C\hat{F})^\dagger \\
 C = (\hat{F}Q)^\dagger
 \end{cases}
 \] [Zhao & al., 2009]
Spectral learning [Rosencrantz & al., 2004]

1. Find best rank-\(d\) approximation to \(\hat{F}\) [via \(d\)-truncated SVD]:
\[
U_d S_d V_d^\top \approx \hat{F}
\]
- Map columns to \(d\)-dimensional representation via \(C = U_d^\top\).
- May select \(d\) via threshold on singular values.

2. Select \(Q = (C\hat{F})^\dagger = V_d (S_d)^\dagger\),
 i.e., solve learning equations in least squares sense.

Note:
- Can alternatively compute SVD of \(\hat{F} = [\hat{F} \hat{F}_{z_1} \ldots \hat{F}_{z_n}]\)
- This turns out to be equivalent to the “error controlling” algorithm:

 \[
 \begin{cases}
 Q = (C\hat{F})^\dagger \\
 C = (\hat{F}Q)^\dagger
 \end{cases}
 \]
 [Zhao & al., 2009]
Weighted spectral learning [Thon, in preparation]

- Take into account the precision of the estimates $\hat{f}(\bar{x})$
 - Weights $w_{\bar{x}} = \text{Var}[\hat{f}(\bar{x})]^{-1}$

1. Compute best weighted rank-d approximation to \hat{F}:
 - $\hat{F} \approx BA$, where $B, A = \arg\min_{B, A} \|BA - \hat{F}\|_W$
 - d columns of B span column space of \hat{F}
 - Columns of $A = [A \ A_{z_1} \ldots A_{z_n}]$ give coordinates
 - Solve iteratively by fixing one (A_i, B) and solving for other [MLPCA]

2. Solve learning equations by weighted regression or TLS
 - define $\hat{\tau}_* = \begin{bmatrix} \hat{\tau}_{z_1} \\ \vdots \\ \hat{\tau}_{z_n} \\ \hat{\sigma} \end{bmatrix}$ and $A_* = \begin{bmatrix} A_{z_1} \\ \vdots \\ A_{z_n} \end{bmatrix}$
 - $\hat{\tau}_* = \arg\min_{\hat{\tau}_*, E, E_*} \{ \|E\|_W^2 + \|E_*\|_{W_*}^2 : \hat{\tau}_*(A + E) = (A_* + E_*) \}$
Weighted spectral learning [Thon, in preparation]

- Take into account the precision of the estimates \(\hat{f}(\mathbf{x}) \)
 - Weights \(w_\mathbf{x} = \text{Var}[\hat{f}(\mathbf{x})]^{-1} \)

1. Compute best weighted rank-\(d\) approximation to \(\hat{F}_\mathbf{x} \):
 - \(\hat{F}_\mathbf{x} \approx BA_\mathbf{x} \), where \(B, A_\mathbf{x} = \text{argmin}_{B, A_\mathbf{x}} ||BA_\mathbf{x} - \hat{F}_\mathbf{x}||_W \)
 - \(d \) columns of \(B \) span column space of \(\hat{F}_\mathbf{x} \)
 - Columns of \(A_\mathbf{x} = [A \ A_{z1} \ldots A_{zn}] \) give coordinates
 - Solve iteratively by fixing one \((A_\mathbf{x}, B)\) and solving for other [MLPCA]

2. Solve learning equations by weighted regression or TLS

 - Define \(\hat{\tau}_\mathbf{x} = \begin{bmatrix} \hat{\tau}_{z1} \\ \vdots \\ \hat{\tau}_{zn} \end{bmatrix} \) and \(A_\mathbf{x} = \begin{bmatrix} A_{z1} \\ \vdots \\ A_{zn} \end{bmatrix} \)
 - \(\hat{\tau}_\mathbf{x} = \text{argmin}_{\hat{\tau}_\mathbf{x}, E, E_\mathbf{x}} \left\{ \|E\|_W^2 + \|E_\mathbf{x}\|_W^2 : \hat{\tau}_\mathbf{x} (A + E) = (A_\mathbf{x} + E_\mathbf{x}) \right\} \)
Weighted spectral learning [Thon, in preparation]

- Take into account the precision of the estimates $\hat{f}(x)$
 - Weights $w_x = \text{Var}[\hat{f}(x)]^{-1}$

1. Compute best weighted rank-d approximation to \hat{F}:
 - $\hat{F} \approx BA$, where $B, A = \text{argmin}_{B,A} ||BA - \hat{F}||_W$
 - d columns of B span column space of \hat{F}
 - Columns of $A = [A \ A_{z_1} \ldots \ A_{z_n}]$ give coordinates
 - Solve iteratively by fixing one (A, B) and solving for other [MLPCA]

2. Solve learning equations by weighted regression or TLS
 - define $\hat{\tau}_* = \begin{bmatrix} \hat{\tau}_{z_1} \\ \vdots \\ \hat{\tau}_{z_n} \\ \hat{\sigma} \end{bmatrix}$ and $A_* = \begin{bmatrix} A_{z_1} \\ \vdots \\ A_{z_n} \end{bmatrix}$
 - $\hat{\tau}_* = \text{argmin}_{\hat{\tau}_*, E, E_*} \{ ||E||_W^2 + ||E_*||_{W_*}^2 : \hat{\tau}_*(A + E) = (A_* + E_*) \}$
Remarks on weighted TLS

- See “Overview of TLS methods” [Markovsky & Van Huffel, 2007]

- Can also take into account structure of \(\hat{F} \):

- TLS and best low-rank matrix approximation are closely related:

 \[
 \hat{\tau}^* = \text{argmin}_{\hat{\tau}^*, E, E_*} \left\{ \| E \|^2_W + \| E_* \|^2_{W_*} : \hat{\tau}^* (A + E) = (A_* + E_*) \right\}
 \]

 \[
 \hat{\tau}^* (A + E) = (A_* + E_*) \text{ implies } \text{rank} \left(\begin{bmatrix} A + E \\ A_* + E_* \end{bmatrix} \right) = d
 \]

 \[
 \| E \|^2_W + \| E_* \|^2_{W_*} = \| \begin{bmatrix} A \\ A_* + E_* \end{bmatrix} - \begin{bmatrix} A + E \\ A_* + E_* \end{bmatrix} \|^2_{W_{W_*}}
 \]

 \[
 \text{Therefore } \begin{bmatrix} A + E \\ A_* + E_* \end{bmatrix} \text{ is the best } \begin{bmatrix} W \\ W_* \end{bmatrix}-\text{weighted rank-}d \text{ approximation to } \begin{bmatrix} A \\ A_* \end{bmatrix}
 \]

 and

 \[
 \hat{\tau}^* = U_* U^{-1}, \text{ where } \begin{bmatrix} U \\ U_* \end{bmatrix} V = \begin{bmatrix} A + E \\ A_* + E_* \end{bmatrix}
 \]
How to obtain weights

- Often $\hat{f}(x) = \frac{\#(x)}{N}$

- Use $\hat{\text{Var}}[\hat{f}(x)] = \frac{\hat{f}(x)(1-\hat{f}(x))}{N-1} \approx \frac{\hat{f}(x)}{N}$

- $w_x = \hat{\text{Var}}[\hat{f}(x)]^{-1}$

- Can use row/column weights for \hat{F}:
 - Row weights $w_Y = [w_y]_{y \in Y}$
 - Column weights $w_X^\top = [w_x]_{x \in X}$
 - $W = w_Y w_X^\top$, i.e., $w_{xy} = w_x w_y$

- Then:
 - Set $D_Y = \text{diag}(w_Y)^{\frac{1}{2}}$, $D_X = \text{diag}(w_X)^{\frac{1}{2}}$
 - $\|M\|_W = \|D_Y M D_X\|$
How to obtain weights

- Often $\hat{f}(\bar{x}) = \frac{\#(\bar{x})}{N}$

- Use $\hat{\text{Var}}[\hat{f}(\bar{x})] = \frac{\hat{f}(\bar{x})(1-\hat{f}(\bar{x}))}{N-1} \approx \frac{\hat{f}(\bar{x})}{N}$

- $w_{\bar{x}} = \hat{\text{Var}}[\hat{f}(\bar{x})]^{-1}$

- Can use row/column weights for \hat{F}:
 - Row weights $w_Y = [w_y]_{y \in Y}$
 - Column weights $w_X^\top = [w_{\bar{x}}]_{\bar{x} \in X}$
 - $W = w_Y w_X^\top$, i.e., $w_{\bar{x}y} = w_{\bar{x}} w_y$

- Then:
 - Set $D_Y = \text{diag}(w_Y)^{\frac{1}{2}}$, $D_X = \text{diag}(w_X)^{\frac{1}{2}}$
 - $\|M\|_W = \|D_Y M D_X\|$
Simplified row/column weighted spectral algorithm

- \(w_x = \hat{f}(\bar{x})^{-1} \), \(w_y = [w_y]_{y \in Y} \)
- \(w_X = [w_x]_{x \in X} \)
- \(W = w_Y w_X^\top \), \(D_Y = \text{diag}(w_Y)^{\frac{1}{2}} \), \(D_X = \text{diag}(w_X)^{\frac{1}{2}} \)

1. Compute best \(W \)-weighted rank-\(d \) approximation to \(\hat{F} \):
 - \(d \)-truncated SVD \(U_d S_d V_d^\top \) of \(D_Y \hat{F} D_X \)

2. Map columns to \(d \)-dimensional representation with \(C = U_d D_Y \)
 - Set \(A = C \hat{F} \) and \(A_z = C \hat{F}_z \)

2. Solve \(\hat{\tau}_* A \approx A_* \) by weighted TLS, where

\[
\hat{\tau}_* = \begin{bmatrix}
\hat{\tau}_{z_1} \\
\vdots \\
\hat{\tau}_{z_n} \\
\hat{\sigma}
\end{bmatrix}
\quad \text{and} \quad
A_* = \begin{bmatrix}
A_{z_1} \\
\vdots \\
A_{z_n} \\
\hat{f}_\epsilon^\top
\end{bmatrix}
\]
Simplified row/column weighted spectral algorithm

- Rows of $A = U_d^T D_Y \hat{F}$ and $A_z = U_d^T D_Y \hat{F}_z$ are already weighted
- Column weights w_X for A and A_z
- Multiply weights for A_z by $w_z = \hat{f}(z)$
- Multiply A by weight λ, e.g., $\lambda = 1$

2. For $\hat{\tau} A \approx A_*$, compute best rank-d approximation to

$$\begin{bmatrix}
\lambda & A \\
 w_{z_1} & A_{z_1} \\
 \vdots \\
w_{z_n} & A_{z_n} \\
 \hat{f}^T_{\epsilon}
\end{bmatrix} D_X$$

by the d-truncated SVD

$$\begin{bmatrix}
U \\
U_{z_1} \\
\vdots \\
U_{z_n} \\
U_{\sigma}
\end{bmatrix} S_d V_d^T$$

Set

$$\hat{\sigma} = U_{\sigma} U^{-1} w_A$$
$$\hat{\tau}_z = w_z^{-1} U_z U^{-1} w_A$$
$$\hat{\omega}_\epsilon = \hat{\tau} \hat{\omega}_\epsilon \left[= (US_d V_d^T)_1 \right]$$

where $\hat{\tau} = \sum_z \hat{\tau}_z$.

Michael Thon (Jacobs University)
Weights and ES algorithm

NIPS Spectral Learning 14 / 19
Simplified row/column weighted spectral algorithm

- Rows of $A = U_d^T D Y \hat{F}$ and $A_z = U_d^T D Y \hat{F}_z$ are already weighted.
- Column weights w_X for A and A_z.
- Multiply weights for A_z by $w_z = \hat{f}(z)$.
- Multiply A by weight λ, e.g., $\lambda = 1$.

For $\hat{\tau} A \approx A_\tau$, compute best rank-$d$ approximation to

$$\begin{bmatrix} \lambda & A \\ w_{z_1} A_{z_1} & \vdots \\ w_{z_n} A_{z_n} & \hat{f}_\epsilon^T \end{bmatrix} D_X$$

by the d-truncated SVD

$$\begin{bmatrix} U \\ U_{z_1} \\ \vdots \\ U_{z_n} \\ U_\sigma \end{bmatrix} S_d V_d^T$$

Set

- $\hat{\sigma} = U_\sigma U^{-1} w_A$
- $\hat{\tau}_z = w_z^{-1} U_z U^{-1} w_A$
- $\hat{\omega}_\epsilon = \hat{\tau} \hat{\omega}_\epsilon$ [= $(US_d V_d^T)_1$]
Simplified row/column weighted spectral algorithm

- Rows of \(A = U_d^T D_Y \hat{F} \) and \(A_z = U_d^T D_Y \hat{F}_z \) are already weighted.
- Column weights \(w_X \) for \(A \) and \(A_z \).
- Multiply weights for \(A_z \) by \(w_z = \hat{f}(z) \).
- Multiply \(A \) by weight \(\lambda \), e.g., \(\lambda = 1 \).

For \(\hat{\tau}_* A \approx A_* \), compute best rank-\(d \) approximation to

\[
\begin{bmatrix}
\lambda & A \\
 w_{z_1} A_{z_1} & \\
 \vdots & \\
w_{z_n} A_{z_n} & \hat{f}_*^T \\
\end{bmatrix}
\]

by the \(d \)-truncated SVD

\[
D_X \quad \text{by the } d\text{-truncated SVD}
\]

\[
\begin{bmatrix}
U \\
U_{z_1} \\
\vdots \\
U_{z_n} \\
U_\sigma \\
\end{bmatrix}
\]

\[
S_d V_d^T
\]

Set

\[
\hat{\sigma} = U_\sigma U^{-1} w_A \\
\hat{\tau}_z = w_z^{-1} U_z U^{-1} w_A \\
\hat{\omega}_\varepsilon = \hat{\tau} \hat{\omega}_\varepsilon = (U S_d V_d^T)_1
\]

where \(\hat{\tau} = \sum_z \hat{\tau}_z \).
A simple demo

- Use “bible.txt” from the large Canterbury Corpus, reduced to $|\Sigma| = 27$

- Split into training sequence of length 3,831,102 and test sequence of length 2^{16}

- Train OOMs (stochastic process models) using
 - Spectral algorithm
 - Simplified row/column weighted spectral algorithm
 - Efficiency sharpening algorithm

- Settings:
 - $X = Y = \Sigma^2$ (all words of length 2) excluding words that do not occur
 - Target dimension d optimized via cross-validation

- Evaluate via average log-likelihood on test sequence
Results

Quality of learnt models for various training sequence lengths

-1.5
-2.0
-2.5
-3.0
-3.5

Average LL

Length of training sequence

10^3 10^4 10^5 10^6

Spectral
Weighted Spectral
Efficiency Sharpening
Results

Quality of learnt models for various training sequence lengths

- Average LL vs Length of training sequence
 - Spectral
 - Weighted Spectral
 - Efficiency Sharpening

Michael Thon (Jacobs University)
Efficiency sharpening [Jaeger & al., 2006]

- Assume:
 - A model $S = (\sigma, \\{\tau_z\}, \omega_\varepsilon)$ for f is known
 - $\text{Var}[\hat{f}(\bar{x})] \approx K \cdot f(\bar{x})$
 - f is a stationary and ergodic stochastic process
 - $X = \Sigma^l$ for some length l

- View learning equations as model estimator parameterized by C
- Select C such that the variance of this estimator is minimized:
 - $C = \Pi^T D_Y^2$, where $\Pi = [\sigma \tau_{\bar{y}}]_{\bar{y} \in Y}$, $D_Y = \text{diag} \left([f_S(\bar{y})]_{\bar{y} \in Y} \right)^{-\frac{1}{2}}$

- Select Q to perform weighted regression
- Since S is not known, use iterative procedure:
 - Compute C from estimate \hat{S}
 - Set $Q = D_X (C \hat{F} D_X)^\dagger$, for $D_X = \text{diag} \left([\hat{f}(\bar{x})]_{\bar{x} \in X} \right)^{-\frac{1}{2}}$
 - Compute new estimate \hat{S} via learning equations
Efficiency sharpening

- Estimates the principal subspace of the Hankel matrix \hat{F} from a previous model estimate.
- Uses row and column weights.
- Gives good results after few iterations.
- Can avoid computation of \hat{F}. Instead, $C\hat{F}$ and $C\hat{F}_z$ can be approximated from a suffix tree representation of the input data.
- Allows to effectively use $Y = \Sigma^*$ and optimize $X \subset \Sigma^*$:

$$X = \left\{ \bar{x} \in \Sigma^* \mid \begin{array}{l} l_{\text{min}} \leq |\bar{x}| \leq l_{\text{max}}, \\
\#(\bar{x}) > c_{\text{min}}, \\
\bar{x} \text{ has unique continuation statistics} \end{array} \right\}$$
(IO)-OOMs, (T)PSRs and SMA are SS and share the same theory

- Weights can improve the spectral learning algorithms

- Efficiency sharpening estimates the principal subspace of the Hankel matrix and weights from a previous model estimate
Conclusion

- (IO)-OOMs, (T)PSRs and SMA are SS and share the same theory
- Weights can improve the spectral learning algorithms
- Efficiency sharpening estimates the principal subspace of the Hankel matrix and weights from a previous model estimate

Thank you!
References

[Thon, in preparation] PhD Thesis *Jacobs University Bremen, Germany*