Clinical trials with non-adherence & unblinding: a graphical perspective
NIPS 2013: Causality Workshop

Elizabeth Silver
Carnegie Mellon University

December 6, 2013
Even with perfect randomization, clinical trials can be confounded!

Goal:

- Represent graphically:
 - Non-adherence and
 - Unblinding
 within clinical trials

- So as to compare:
 - Intent-to-treat vs.
 - Per Protocol analyses
in terms of confounding.
Non-adherence in clinical trials

Difference between group outcomes =
Average effect of being assigned to treatment A v. B!

Two separate questions:
- Average effect of prescribing the treatment (for this population)?
- Average causal effect of taking the treatment (in this population)?
Intent to treat v. per protocol analyses

- **Intent-to-treat analysis**: compare everyone assigned to treatment with everyone assigned to placebo.
- **Per protocol analysis**: compare people who adhered to treatment with people who adhered to placebo. (More generally: condition on adherence level when comparing groups.)

Table: Example: mortality in the Coronary Drug Project ($n = 3,892)$

<table>
<thead>
<tr>
<th></th>
<th>Clofibrate</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence $\geq 80%$</td>
<td>15.0%</td>
<td>15.1%</td>
</tr>
<tr>
<td>Adherence $< 80%$</td>
<td>28.2%</td>
<td>24.6%</td>
</tr>
<tr>
<td>Total</td>
<td>20.0%</td>
<td>20.9%</td>
</tr>
</tbody>
</table>

- In the CDP, Intent-to-treat and per protocol produce same result.
- Widely cited as an example of why per protocol analyses may be biased (!)
NON-ADHERENCE AS AN OPPORTUNITY

Third category of questions:

- Average causal effect of:
 - Missing a dose?
 - Taking a shorter course?
 - Making Dose Timing Errors (DTEs)?
 - Taking “drug holidays”?

(compared to perfect adherence)

Example: The “critical concentration zone”, in which antiretroviral drugs select for resistant viruses. Dose timing errors mean the patient spends more time in this zone.

Russell Katz:

[…] there is absolutely no assurance that the compliers in the placebo group are the same as the compliers (or noncompliers to noncompliers) on both known and unknown factors that might affect outcome. It is possible, for example, that the reasons for compliance (or noncompliance) are different between treatment groups and that those differences might have an effect on the outcome.

Standard causal graph of a clinical trial

We assume that:

- *Allocation* is exogenous (by randomization)
- *Allocation* affects *Outcome* only through its effect on *Treatment* (thanks to double-blind design)

Note: *Treatment* ≠ *Adherence*!

Treatment means “amount of active treatment received”
Representing Adherence in the Graph

In this model:

- Conditional on Adherence (as in a per protocol analysis), our estimate of the effect of Treatment on Outcome is unconfounded.

- However, Adherence \(\perp \perp \) Allocation.

 Katz was worried about the case where Adherence \(\not\perp \) Allocation.

Notice the deterministic edges: Allocation and Adherence jointly determine Treatment.
Unblinding

Causes of unblinding:

▶ (Noticeably) effective treatment – or noticeably ineffective placebo
▶ Adverse effects

Effects of unblinding:

▶ Reporting biases:
 ▶ Noseworthy et al. (1994): When assessing MS patients, Unblinded neurologists favored the treatment. Blinded neurologists favored the placebo, if anything.
▶ Differential treatment:
 ▶ Non-trial medication, dose adjustment, withdrawal from trial, etc.
 ▶ Differential adherence
In theory, unblinding biases the per protocol analysis via:

\[
\text{Allocation} \rightarrow \text{Adherence} \leftarrow U \rightarrow \text{Outcome}
\]

\& biases both per protocol and ITT via: \(Allocation \rightarrow \text{Outcome} \)

These effects are testable
DID Allocation AFFECT Adherence IN THE CDP?

- Clofibrate and placebo adherence distributions were no different ($\chi^2(5) = 5.86, \ p = 0.32$).
- Allocation was independent of Outcome conditional on Adherence ($\chi^2(3) = 1.89, \ p = 0.60$), despite Adherence–Outcome association.
- Similar distributions of side effects & dropout rates between groups.
Problem: The graph still doesn’t represent our background knowledge

First problem:

- We assume the trial was *designed* to be double blind.
- This implies that all effects of *Allocation* go through *Treatment*. Acyclicity prohibits any effect on *Adherence*.
- Solution: Time-series representation.

Second problem:

- “Reporting biases” and “differential treatment” no longer distinct from direct physical effects of treatment.
- Solution: Introduce the mediating variable: Patients’ & doctors’ *Beliefs* about allocation.
Causal understanding of unblinding

How unblinding is typically measured: Ask patients and doctors to guess patients’ Allocation. If they can guess better than chance, infer unblinding

Def: Unblinded. A trial is unblinded iff there is a directed path from Allocation to patients’ or assessors’ Beliefs about allocation.
Time series of an unblinded trial

Allocation

\[T_1 \]

\[T_2 \]

\[T_3 \]

Outcome

\[A_1 \]

\[A_2 \]

\[A_3 \]

\[B_1 \]

\[B_2 \]

\[B_3 \]

\[U \]
Time series of a blinded trial

Allocation

T_1 T_2 T_3

Outcome

A_1 A_2 A_3

B_1 B_2 B_3

U

Graphical models
Time series representations

Lizzie Silver (CMU)
Clinical trials: a graphical perspective
December 6, 2013
Possible approaches if the blind fails

The time series graph, like the static graph, implies that per protocol will be confounded in an unblinded trial. If the blind fails, we can:

1. Expand the causal structure: Measure variables in \(U \), or
2. Do an Instrumental Variables analysis

Assuming that reporting bias and differential treatment bias are negligible.
Measuring U

Candidate members of U:

- Diet
- Exercise
- Regular Dr’s appts.
- Vaccinations
- Depression
-
- Adherence to effective non-trial medication

Check for success:

- In placebo group, we assume no edges from Treatment to Outcome
- Thus, in the placebo group, Adherence \perp\vert Outcome\vert Beliefs, U
What if the blind fails?

Measuring variables in U

USING THE PLACEBO GROUP AS A CHECK

\[Allocation = \text{Placebo} \]

\[T_1 \rightarrow U \]

\[T_2 \rightarrow B_1 \]

\[T_3 \rightarrow B_2 \]

\[B_3 \rightarrow A_1 \]

\[B_2 \rightarrow A_2 \]

\[B_1 \rightarrow A_3 \]

Outcome
Instrumental Variables

Use a combination of graphical and parametric assumptions to estimate the average causal effect (ACE) of treatment on outcome.

\[
\begin{align*}
\text{Allocation} & \xrightarrow{\alpha} \text{Treatment} \xrightarrow{\beta} \text{Outcome} \\
\end{align*}
\]

Sufficient parametric assumptions:

- Linearity,
- Log-linearity, or
- Monotonicity

Like ITT, assumes no direct edge from Allocation to Outcome (i.e. no reporting biases, no differential treatment biases, no bias induced by Dropout).
 Alternatives to per protocol

Instrumental Variables

IV: ACE with finite response variables

Alternatively: make *Treatment* and *Outcome* binary, and use finite response variables (Pearl)

\[
\begin{array}{ccc}
 & U & \\
 & R_T & R_O \\
\end{array}
\]

Allocation → *Treatment* → *Outcome*

Gives bounds rather than point estimation. No linearity required!

However: requires that *d*-separation relationships remain the same after coarsening into binary variables.
RECOMMENDATIONS FOR TRIAL DESIGN

1. Test the success of the double-blind design
 ▶ Directly: by asking participants and doctors to guess *Allocation*
 ▶ Indirectly: By measuring the association between *Allocation* and *Adherence*; by comparing the distributions of dropouts and adverse effects between groups; etc.

2. Measure *Adherence* accurately – i.e. use electronic monitoring

3. Measure as many candidate members of \(U \) as possible
Thank you
Cochrane Collaboration cites the CDP

The Cochrane Handbook for authors of systematic reviews:

‘As-treated’ (per-protocol) analyses

[...] A similarly inappropriate approach to analysis of a study is to focus only on participants who complied with the protocol. A striking example is [the CDP]. [...] Those who adhered well to the protocol in the clofibrate group had lower five-year mortality (15.0%) than those who did not (24.6%). However, a similar difference between ‘good adherers’ and ‘poor adherers’ was observed in the placebo group (15.1% vs 28.3%). Thus, adherence was a marker of prognosis rather than modifying the effect of clofibrate. These findings show the serious difficulty of evaluating intervention efficacy in subgroups determined by patient responses to the interventions. [...]