General Motivation

In Many Computations ...
Storage Costs of Pointers and Other
Structures Dominate that of Real Data
Often this information is not “just random pointers”

How do we encode a combinatorial object (e.g. a tree) of specialized information ... even a static one
in a small amount of space & still
perform queries in constant time ???
Representation of a combinatorial object:

Space requirement of representation “close to” information theoretic lower bound and

Time for operations required of the data type comparable to that of representation without such space constraints ($O(1)$)
Example: Static Bounded Subset

Given: Universe \([m] = 0, \ldots, m-1\) and \(n\) arbitrary elements from this universe
Create: Static data structure to support “member?” in constant time in the \(\lg m\) bit RAM model
Using: Close to information theory lower bound space, i.e. about \(\lg \binom{m}{n}\) bits
(Brodnik & M)
Beame-Fich: Find largest less than i is tough in some ranges of m (e.g. $m \approx 2^{\sqrt{\lg n}}$)

But OK if i is present this can be added (Raman, Raman, Rao etc)
Focus on Trees

Because Computer Science is Arborphilic

Directories (Unix, all the rest)

Search trees (B-trees, binary search trees, digital trees or tries)

Graph structures (we do a tree based search)

and a key application

Search indices for text (including DNA)
Given a large text file; treat it as bit vector
Construct a trie with leaves pointing to unique locations in text that “match” path in trie (paths must start at character boundaries)
Skip the nodes where there is no branching (n-1 internal nodes)
So the basic story on text search

A suffix tree (40 years old last year) permits search for any arbitrary query string in time proportional to the query string. But the usual space for the tree can be prohibitive. Most users, especially in Bioinformatics as well as Open Text and Manber & Myers went to suffix arrays instead.

Suffix array: reference to each index point in order by what is pointed to
The Issue

Suffix tree/ array methods remain extremely effective, especially for single user, single machine searches.
So, can we represent a tree (e.g. a binary tree) in substantially less space?
Abstract data type: binary tree
Size: n-1 internal nodes, n leaves
Operations: child, parent, subtree size, leaf data
Motivation: “Obvious” representation of an n node tree takes about $6n \lg n$ bit words (up, left, right, size, memory manager, leaf reference)
i.e. full suffix tree takes about 5 or 6 times the space of suffix array (i.e. leaf references only)
Succinct Representations of Trees

Start with Jacobson, then others:

Catalan number = # ordered rooted forests
Or # binary trees

\[\frac{1}{n+1} \binom{2n}{n} \approx \frac{4^n}{(\pi n)^{3/2}} \]

So lower bound on specifying is about \(2n\) bits

What are natural representations?
Use parenthesis notation
Represent the tree

As the binary string ((((()))))(((())())): traverse tree as “(“ for node, then subtrees, then “)”

Each node takes 2 bits ... but operations?
What you learned about Heaps

Only 1 heap (shape) on n nodes
Balanced tree,
bottom level pushed left
number nodes row by row;
lchild(i) = 2i; rchild(i) = 2i + 1
What you learned about Heaps

Only 1 heap (shape) on n nodes
Balanced tree, bottom level pushed left
number nodes row by row;
lchild(i)=2i; rchild(i)=2i+1

Data: Parent value > child
This gives an implicit data structure for priority queue
Generalizing: Heap-like Notation for ANY Binary Tree

Add external nodes
Enumerate level by level

Store vector 11110111001000000 length $2n+1$
(Here we don’t know size of subtrees; can be overcome. Could use isomorphism to flip between notations)
How do we Navigate?

Jacobson’s key suggestion:
Operations on a bit vector

\[\text{rank}(x) = \# \text{ 1’s up to & including } x \]

\[\text{select}(x) = \text{position of } x^{\text{th}} \text{ 1} \]

So in the binary tree

\[\text{leftchild}(x) = 2 \cdot \text{rank}(x) \]

\[\text{rightchild}(x) = 2 \cdot \text{rank}(x) + 1 \]

\[\text{parent}(x) = \text{select}(\lfloor x/2 \rfloor) \]
Add external nodes
Enumerate level by level

Store vector 11110111001000000 length 2n+1
(Here don’t know size of subtrees; can be overcome. Could use isomorphism to flip between notations)
Rank: Auxiliary storage \(\sim \frac{2n \log \log n}{\log n} \) bits
#1’s up to each \((\log n)^2\) rd bit
#1’s within these too each \(\frac{1}{2} \log n\) th bit
Table lookup after that

Select: More complicated (especially to get this lower order term) but similar notions

Key issue: Rank & Select take \(O(1)\) time with \(\log n\) bit word (M. et al)… as detailed on the board
Lower Bound: for Rank & for Select

Theorem (Golynski): Given a bit vector of length n and an “index” (extra data) of size r bits, let t be the number of bits probed to perform rank (or select) then: $r = \Omega(n \lg t / t)$.

Proof idea: Argue to reconstructing the entire string with too few rank queries (similarly for select)

Corollary (Golynski): Under the $\lg n$ bit RAM model, an index of size $\Theta(n \lg \lg n / \lg n)$ is necessary and sufficient to perform the rank and the select operations in $O(\lg n)$ bit probes, so in $O(1)$ time.
Planar Graphs (Jacobson; Lu et al; Barbay et al)

Subset of \([n]\) (Brodnik & M)

Permutations \([n] \rightarrow [n]\)

Or more generally

Functions \([n] \rightarrow [n]\) But what operations?

Clearly \(\pi(i)\), but also \(\pi^{-1}(i)\)

And then \(\pi^k(i)\) and \(\pi^{-k}(i)\)
More Data Types

Suffix Arrays (special permutations; references to positions in text sorted lexicographically) in linear space ... after all writing the string takes only linear space.
“Arbitrary” Classes of Trees

Consider classes of trees where “all small subtrees” are members of the class. (e.g. ordinal trees of degree at most 2) We can represent such trees in “near optimal space” and navigate in constant time. Even if we don’t know the space lower bound!

(Arash and M)
Partial Orders

Partial order ... the transitive closure of a directed graph.
What is the ITLB?
Represent as upper triangular 0-1 matrix. $n^2/2$
But almost of these not “transitive closures”
Right answer $n^2/4$
Can achieve this bound
(Nicholson & M)
Arbitrary Graphs/Digraphs

n vertices and m edges, support adjacency and degree queries

Lower bound: impossible to answer such queries in constant time (per node) ...

In information theory lower bound (unless the graph is very sparse \(m = o(n^\delta)\) for any constant \(\delta > 0\)) or (similarly) too dense.

But in space \((1+\varepsilon)\mathrm{ITLB}\), we **can** do it.

(Farzan & M)
But first … how about integers

Of “arbitrary” size
Clearly $\lg n$ bits ... if we take n as an upper bound
But what if we have “no idea”
Elias: $\lg \lg n$ 0’s, $\lg n$ in $\lg \lg n$ bits, n in $\lg n$ bits

Can we do better?
A useful trick in many representations
Dictionary over \(n \) elements \([m]\)

Brodnik & M

Fredman, Komlós & Szemerédi (FKS)

Hashing gives constant search using “keys” plus \(n \lg m + o() \) bits

B&M approach: Information theory lower bound is \(\lg \binom{m}{n} \)

Spare and dense cases

Sparse: can afford \(n \) bits as initial index

... several cases for sparse and for dense
More on Trees

“Two” types of trees ... ordinal and cardinal
i.e. 1st 2nd 3rd versus 1,2,3

Cardinal trees: e.g. Binary trees are cardinal trees of degree 2, each location “taken or not”. Number of k-ary trees

\[\mathcal{C}_n^k = \frac{\binom{kn + 1}{n}}{(kn + 1)} \]

So ITLB \(\approx \lg(k - 1) + k \lg(k/(k - 1)n) \) bits
Ordinal Trees

Children ordered, no bound on number of children, \(i^{th} \) cannot exist without \(i-1^{st} \)

These correspond to balanced parentheses expressions, Catalan number of forests on \(n \) nodes

A variety of representations
But first we need:
Indexable Dictionaries

Getting that “n” down if there are few 1’s

S = n elements for [m]
Rank(i, S) gives # elements ≤ i
Select(i, S) gives i\(^{\text{th}}\) smallest

in ITLB = \(B = \lg \left(\frac{m}{n}\right)\) ... or so

A problem ... Atai lower bound \(\Omega(\lg \lg n)\)
Sidestep by only asking for Rank(i, S) if \(i \in S\)
Raman, Raman & Rao
Key rule ... nodes numbered 1 to n, but data structure gets to choose “names” of nodes
Would like ordinal operations: parent, i^{th} child, degree, subtree size
Plus child i for cardinal
Ordinals

Many orderings: LevelOrder UnaryDegreeSequence
Node: d 1’s (child birth announcements) then a 0 (death of the node)
Write in level order: root has a “1 in the sky”, then birth order = death order

Gives O(1) time for parent, i^{th} child, degree
Balanced parents gives others, DFUDS ... all
Easy approach: Each node gets k bits, saying which children are there
So kn bits, say in LOUDS or DFS order

Problem, the space lower bound:

\[
\lg(C(n, k)) \approx \lg(k - 1) + k \lg\left(\frac{k}{k - 1}\right)n
\]

\[
\approx (\lg k + \lg e) n \text{ bits}
\]

(as k grows)
Another approach

- Ordinal for underlying structure (say DFUDS)
 Gives parent, i^{th} child, degree, subtree size
 Now have to deal with child j
 Suppose a node has d of k children
 “just” need $i = \text{rank}(j)$, use indexable dict.
 i.e. $d \log k + o(d) + O(\log \log k)$ bits each
 Can be made $n \log k + o(n) + O(\log \log k)$
 no n
More on Trees

Dynamic trees: Tough going, mainly memory management
M, Storm and Raman and Raman, Raman & Rao

Other classes: Decomposition into big tree \((o(n)\) nodes); minitrees hanging off (again \(o(n)\) in total); and microtrees (most nodes here) microtrees small enough to be coded in table of size \(o(n)\)
If micotrees have “special feature”, encoding can be optimal.. Even if you don’t know what that means.
(Farzan & M)
Permutations and Functions

Permutation π, write in natural form:

$\pi(i)$ $i = 1,...n$: space $n \ lg \ n$ bits, good!

Great for computing π, but how about π^{-1} or π^{k}

Other option: write in cycles, mildly worse for space, much worse for any calculations above
Let P be a simple array giving π; $P[i] = \pi[i]$
Also have $B[i]$ as a pointer t positions back in (the cycle of) the permutation;
$B[i] = \pi^{-t}[i]$.. But only define B for every t^{th} position in cycle. (t is a constant; ignore cycle length “round-off”)

So array representation

$P = [8 \ 4 \ 12 \ 5 \ 13 \ x \ x \ 3 \ x \ 2 \ x \ 10 \ 1]$

1 2 3 4 5 6 7 8 9 10 11 12 13
In a cycle there is a B every t positions ...
But these positions can be in “arbitrary” order

Which i’s have a B, and how do we store it?
Keep a vector of all positions: 0 = no B 1 = B

Rank gives the position of B[“i”] in B array
So: $\pi(i)$ & $\pi^{-1}(i)$ in $O(1)$ time & $(1+\varepsilon)n \log n$ bits

Theorem: Under a pointer machine model with
space $(1+ \varepsilon)n$ references, we need time $1/\varepsilon$
to answer π and π^{-1} queries; i.e. this is as
good as it gets ... in the pointer model.
This is the best we can do for $O(1)$ operations. But using **Benes networks:**

1-Benes network is a 2 input/2 output switch.

$r+1$-Benes network ... join tops to tops.

\[\#\text{bits}(n) = 2\#\text{bits}(n/2) + n = n \lg n - n + 1 = \min + \Theta(n) \]
Realizing the permutation (std $\pi(i)$ notation)

$\pi = (5 \ 8 \ 1 \ 7 \ 2 \ 6 \ 3 \ 4)$; $\pi^{-1} = (3 \ 5 \ 7 \ 8 \ 1 \ 6 \ 4 \ 2)$

Note: $\Theta(n)$ bits more than “necessary”
Divide into blocks of $\log \log n$ gates ... encode their actions in a word. Taking advantage of regularity of address mechanism and also Modify approach to avoid power of 2 issue Can trace a path in time $O(\log n/(\log \log n))$ This is the best time we are able get for π and π^{-1} in nearly minimum space.
Both are Best

Observe: This method “violates” the pointer machine lower bound by using “micropointers”.

But ...

More general Lower Bound (Golynski): Both methods are optimal for their respective extra space constraints
Consider the cycles of \(\pi \)
\[(2 \ 6 \ 8)(3 \ 5 \ 9 \ 10)(4 \ 1 \ 7)\]
Bit vector indicates start of each cycle
\[(2 \ 6 \ 8 \ 3 \ 5 \ 9 \ 10 \ 4 \ 1 \ 7)\]
Ignore parens, view as new permutation, \(\psi \).
Note: \(\psi^{-1}(i) \) is position containing \(i \) ...
So we have \(\psi \) and \(\psi^{-1} \) as before
Use \(\psi^{-1}(i) \) to find \(i \), then \(n \) bit vector (rank, select) to find \(\pi^k \) or \(\pi^{-k} \)
Now consider arbitrary functions $[n] \rightarrow [n]$
“A function is just a hairy permutation”
All tree edges lead to a cycle
Challenges here

Essentially write down the components in a convenient order and use the $n \lg n$ bits to describe the mapping (as per permutations)

To get $f^k(i)$:
Find the level ancestor (k levels up) in a tree

Or

Go up to root and apply f the remaining number of steps around a cycle
Level Ancestors

There are several level ancestor techniques using $O(1)$ time and $O(n)$ WORDS. Adapt Bender & Farach-Colton to work in $O(n)$ bits

But going the other way ...
Moving Down the tree (toward leaves) requires care

\(f^{-3}(\bullet) = (\bullet) \)

The trick:

Report all nodes on a given level of a tree in time proportional to the number of nodes, and

Don’t waste time on trees with no answers
Given an arbitrary function $f: [n] \rightarrow [n]$

With an $n \log n + O(n)$ bit representation we can compute $f^k(i)$ in $O(1)$ time and $f^{-k}(i)$ in time $O(1 + \text{size of answer})$.

f & f^{-1} are very useful in several applications

... then on to binary relations (HTML markup)
Succinct Data Structures for Representing Equivalence Classes

Moshe Lewenstein
Ian Munro
Venkatesh Raman
Hichen ElZein

University of Waterloo
Succinct Data Structures …

The Game

Represent a combinatorial object, size n, using $\lg(\# \text{ objects})$ “or so” bits
Perform the necessary queries “quickly”

“Naming” can be an issue. Primary interest in names 1...n.
Not an issue for “dense graphs”, but is for trees, planar graphs, and definitely for equivalence classes
Label Space:
Direct Equivalence Queries

But first ... give elements distinct “names” over “smallest space” so that elements in same class can be recognized, with no extra space

Katz, Katz, Korman & Peleg studied k-connectivity: $\Omega(k \lg n)$ bit lower bound

For our problem, $k=1$ so i^{th} largest bucket has at most n/i elements

Thm: Label space $\sum_{i=1}^{n} \lfloor n/i \rfloor$ necessary and sufficient.
Can support constant time equivalence class queries using labels of
\[\lg n + \lg \lg n + 2 \text{ bits.} \]
(Put elements in appropriate n/i size buckets; need care with “breakpoints” between buckets)

Under this model \[\lg n + \lg \lg n - \Theta(1) \] are necessary (from previous theorem)
Our Real Problem

Labels 1 … n (but we pick)

This means we have to store a data structure that distinguishes between partitions:

Hardy-Ramanujan formula \(\approx \frac{1}{4n\sqrt{3}} e^{\left(\pi \sqrt{\frac{2n}{3}}\right)} \)

Taking \(\lg \)

Lower Bound: \((\pi \sqrt{\frac{2}{3}} \lg e) \sqrt{n} - \lg n + O(1) \) bits
$O(n^{1/2})$ bit Structure

$O(\lg n)$ Time

Elements of same class numbered consec.
Classes of same size ordered consecutively

- k distinct classes sizes: s_i
- n_i classes of size s_i
- $\gamma_i = s_i n_i$ elements in a class of size s_i
- Order by γ_i (non-decreasing)
- Note # class sizes $k \leq (2n)^{1/2}$
We store 2 sequences \((i=1,k)\)

S: \(\delta_i = \gamma_i - \gamma_{i-1} = s_i n_i - s_{i-1} n_{i-1}\) \((s_0 n_0 = 0)\)

M: \(n_i\)

And **Shadows** – bit vector 1 indicates start of new term (play a rank/select game on these)

Also store \(\sum_{j=1}^{i} s_j n_j\) “occasionally”
Finding a Class

Store $\sum_{j=1}^{i} s_j n_j$ for every $\lg n^{th}$ i value

So, given x, we find its class

- Binary search to find the right $\lg n$-block
- Sequential search in $\lg n$-block to find right class size
- Compute class in size group
Speeding Up Search

For $\Theta(n^{1/2} \lg n / \lg \lg n)$ bits
And $\Theta(\lg \lg n)$ time

- Store sequences $\lg \lg n$ apart
- Use y-fast trees
Getting to Constant Time

But $O(n^{1/2} \lg n)$ bits

More work and more details.
Key point is computing (integer) square roots in constant time, by table lookup and $O(1)$ extra work
(Curiously avoiding the $\lg \lg n$ iterations of Newton...also used by Rajeev Raman)
Updates?

Can support unions .. OK, simplicity
Space: $O(n^{1/2} \lg n)$ bits
Worst case merge: $O(\lg n/\lg \lg n)$ time
Amortized query time: $O(\alpha(n))$

How?
Multiple copies, old, updating, new
“Time sharing” etc
Space-Name Space Tradeoff

- For “ideal name space” we have \(\Theta(n^{1/2}) \) bits ... and that’s as good as it gets
- For knowing only \(n \), we need \(n \ln n \) name space
- Are there tradeoffs?
Space-Name Space Tradeoff

- For “ideal name space” we have $\Theta(n^{1/2})$ bits ... and that’s as good as it gets
- For knowing only n, we need $n \ln n$ name space
- Suppose we round each equivalence class size up to power of 2 in “ideal case”
 - Name space $2n$
 - Keep track of number of each size
 - Leads to constant time and $\Theta(\lg^2 n)$ space
For “ideal name space” we have $\Theta(n^{1/2})$ bits ... and that’s as good as it gets

For knowing only n, we need $n \ln n$ name space

Name space $2n$, Suppose we raise each equivalence class size up to power of 2 in “ideal case”, $\Theta(\lg^2 n)$ space

Raise # classes of “same size” to power of 2 ... $\Theta(\lg n \ \lg \lg n)$ space
Do We Have to Know \(n \)?

- “No memory” method assumes we know \(n \)
- But that is \(\lg n \) bits (or so)
- A few more improvements; e.g. label space \((1+\varepsilon)n\) and no extra space.
- Suppose we raise \(n \) to next power of 2, need only \(\lg \lg n \) bits (or so); just doubles name space, still \(\Theta(n \lg n) \)
Overall Conclusion

Interesting & useful, combinatorial objects can be: Stored succinctly ... $O(\text{lower bound}) + o()$ so Natural queries are performed in $O(1)$ time (or at least very close)

Packages: http://pizzachili.dcc.uchile.cl/index.html Ferragina & Navarro; (also package (RoSA) of Simon Gog) This can make the difference between using the data type and not ...