Scalable Diffusion-Aware Optimization of Network Topology

Elias Khalil
Joint work with Bistra Dilkina, Le Song

School of Computational Science & Engineering
Diffusion on Networks: Why Care?
Some important questions

• Modeling cascading behavior: [Kempe ‘03]
• Source Selection for Influence Maximization:
 • Problem formulation: [Domingos ‘02]
 • Submodularity: [Kempe ‘03]
 • Hardness of influence estimation: [Chen ‘10]
 • Fast heuristics: [Chen ‘10]
• Optimizing the Structure of Diffusion Networks
Optimizing Network Structure
Optimizing Network Structure

Deleting Edges to Minimize a Spread
Optimizing Network Structure

Deleting Edges to Minimize a Spread
Optimizing Network Structure
Optimizing Network Structure

Adding Edges to Maximize a Spread
Optimizing Network Structure

Adding Edges to Maximize a Spread
Optimizing Network Structure

How to strategically modify networks to optimize their susceptibility to cascades?
State-of-the-art in Optimizing Diffusion Networks

<table>
<thead>
<tr>
<th>Problems</th>
<th>SIR</th>
<th>IC</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ’12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ’12]</td>
<td>[Sheldon ’10]</td>
<td></td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ’10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guarantees</td>
<td>Eigenvalue-based Approx. guarantees Scalable method</td>
</tr>
<tr>
<td>AND Scalability</td>
<td>Mixed Integer Program Approx. guarantees Not scalable!</td>
</tr>
</tbody>
</table>

KDD, NYC August 26th 2014
Elias Khalil
State-of-the-art in Optimizing Diffusion Networks

MODELS

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>SIR</th>
<th>IC</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ‘12]</td>
<td></td>
<td>[Sheldon ‘10]</td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Guarantees** AND **Scalability**

- Eigenvalue-based Approx. guarantees
- Scalable method

- Mixed Integer Program
- Approx. guarantees
- Not scalable!
State-of-the-art in Optimizing Diffusion Networks

Problems

<table>
<thead>
<tr>
<th>Edge Deletion</th>
<th>[Tong ‘12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
</tr>
</tbody>
</table>

Guarantees and Scalability

- **SIR**
 - Eigenvalue-based
 - Approx. guarantees
 - Scalable method

- **IC**
 - Mixed Integer Program
 - Approx. guarantees
 - Not scalable!

KDD, NYC August 26th 2014

Elias Khalil
State-of-the-art in Optimizing Diffusion Networks

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>SIR</th>
<th>IC</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong '12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong '12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong '10]</td>
<td></td>
<td>[Sheldon '10]</td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Guarantees AND Scalability**
 - Eigenvalue-based Approx. guarantees
 - Scalable method
 - Mixed Integer Program
 - Approx. guarantees
 - Not scalable!

KDD, NYC August 26th 2014

Elias Khalil
State-of-the-art in Optimizing Diffusion Networks

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>SIR</th>
<th>IC</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ‘12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
<td>[Sheldon ‘10]</td>
<td></td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
<td>Mixed Integer Program</td>
<td></td>
</tr>
</tbody>
</table>

- **Guarantees AND Scalability**
 - SIR: Eigenvalue-based Approx. guarantees Scalable method
 - IC: Approx. guarantees Not scalable!

KDD, NYC August 26th 2014

Elias Khalil
State-of-the-art in Optimizing Diffusion Networks

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>SIR</th>
<th>IC</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ‘12]</td>
<td></td>
<td>[Sheldon ‘10]</td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guarantees AND Scalability</td>
<td>Eigenvalue-based Approx. guarantees Scalable method</td>
<td>Mixed Integer Program Approx. guarantees Not scalable!</td>
<td></td>
</tr>
</tbody>
</table>
State-of-the-art in Optimizing Diffusion Networks

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>SIR</th>
<th>IC</th>
<th>LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ‘12]</td>
<td>[Sheldon ‘10]</td>
<td></td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node Addition</td>
<td></td>
<td>Mixed Integer Program</td>
<td></td>
</tr>
<tr>
<td>Guarantees AND Scalability</td>
<td>Eigenvalue-based Approx. guarantees Scalable method</td>
<td>Approx. guarantees Not scalable!</td>
<td></td>
</tr>
</tbody>
</table>

KDD, NYC August 26th 2014
Elias Khalil
State-of-the-art in Optimizing Diffusion Networks

Models

<table>
<thead>
<tr>
<th>SIR</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ‘12]</td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
</tr>
<tr>
<td>Node Addition</td>
<td>-</td>
</tr>
<tr>
<td>Guarantees AND Scalability</td>
<td>Eigenvalue-based Approx. guarantees Scalable method</td>
</tr>
<tr>
<td></td>
<td>Mixed Integer Program Approx. guarantees Not scalable!</td>
</tr>
</tbody>
</table>

This Paper

KDD, NYC August 26th 2014

Elias Khalil
State-of-the-art in Optimizing Diffusion Networks

<table>
<thead>
<tr>
<th>Problems</th>
<th>SIR</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Deletion</td>
<td>[Tong ‘12]</td>
<td>-</td>
</tr>
<tr>
<td>Edge Addition</td>
<td>[Tong ‘12]</td>
<td>-</td>
</tr>
<tr>
<td>Node Deletion</td>
<td>[Tong ‘10]</td>
<td>[Sheldon ‘10]</td>
</tr>
<tr>
<td>Node Addition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guarantees AND Scalability

- Eigenvalue-based Approx. guarantees
- Scalable method

- Mixed Integer Program
- Approx. guarantees
- Not scalable!
Contributions & Outline

1. Theoretical aspects: a new framework for LT
 - New mathematical properties of the model
 - Supermodularity of our problems’ objective functions
 - Near-optimal optimization schemes

2. Algorithmic aspects: designing scalable algorithms
 - Edge Deletion*
 - Specialized Tree Data Structure
 - Edge Addition*
 - Randomized Neighborhood Size Estimation
 - Networks with Millions of edges
 - Linear Time & Space Algorithms
 - Deletion: 10-20% better
 - Addition: 100% better than next best heuristic

*All results trivially extend to node deletion (addition)
Definitions

A possible cascade

\[G(V, E, w) \]
Definitions

A possible cascade
↔
Live-Edge Graph (L.E.G)

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

Space of Live-Edge Graphs

\[G(V, E, w) \]

\[X_G \]
Definitions

\[G(V, E, w) \]

Space of Live-Edge Graphs

\[X_G \]

Live-Edge Graph (L.E.G)

\[
\begin{align*}
\Pr[X_1|G] & \quad \Pr[X_2|G] \\
\Pr[X_3|G] & \quad \Pr[X_4|G] \\
\Pr[X_5|G] &
\end{align*}
\]
Definitions

Live-Edge Graph (L.E.G)

Space of Live-Edge Graphs

\[\mathcal{P}_{\mathcal{X} \mid G} \]

\[r(a, X_1) = 2 \]

\[G(V, E, w) \]
Definitions

Live-Edge Graph (L.E.G)

$\text{Pr}[X_1|G] \quad r(a, X_1) = 2$

$\text{Pr}[X_2|G] \quad r(a, X_2)$

$\text{Pr}[X_3|G] \quad r(a, X_3)$

$\text{Pr}[X_4|G] \quad r(a, X_4)$

$\text{Pr}[X_5|G] \quad r(a, X_5)$

Space of Live-Edge Graphs

X_G

$G(V, E, w)$

Influence(a, G)

$$= \sum_{i=1}^{5} \text{Pr}[X_i|G] \times r(a, X_i)$$

KDD, NYC August 26th 2014

Elias Khalil
Optimization Formulation

• **Edge Deletion**

\[S^* := \arg\min_{S \subseteq E : |S| = k} \sum_{a \in A} \text{Influence}(a, G \setminus S) \]

\(k \) edges minimizing...

...the sum of the influences of the sources \(A \) on graph \(G(V, E \setminus S, w) \)

• **Edge Addition**

\[S^* := \arg\max_{S \subseteq C : |S| = k} \sum_{a \in A} \text{Influence}(a, G \cup S) \]

\(A \): set of source nodes \(A \in V \)

\(C \): set of candidates edges for addition \(C \cap E = \emptyset \)
Challenges in Analyzing the Objectives

Source Selection objective [Kempe ‘03]

- \((S, G)\) is Monotone w.r.t. node set \(S\) is simple:
- Fixing a L.E.G \(x\):

Our objectives (e.g. edge deletion)

- \((a, G\backslash S)\) is Monotone w.r.t. edge set \(E\backslash S\) is NOT simple:
- Fixing a source \(a\):
Challenges in Analyzing the Objectives

Source Selection objective [Kempe ‘03]

\(SS, GG)\) is Monotone w.r.t. node set \(A^* S\) is simple:

\[\text{Influence}(S, G)\]

Common to the two terms above

Fixing a L.E.G \(X\):

\[\text{Influence}(S \cup v, G) - \text{Influence}(S, G)\]

\[= \Pr[X | G] \times [r(S \cup v, X) - r(S, X)]\]

\[\geq \]

\[\Rightarrow \text{DONE!}\]

Our objectives (e.g. edge deletion)

\(a, G\backslash S\) is

Monotone w.r.t. edge set \(E\backslash S\) is NOT simple:

Fixing a source \(a\):

\[A^* \equiv \arg\max_{S \subseteq V: |S| = k} \text{Influence}(S, G)\]
Challenges in Analyzing the Objectives

Source Selection objective [Kempe ‘03]

- \(SS, GG \) is Monotone w.r.t. node set
- \(A^* \subseteq SS \) is simple:
- \(\sum_{S \subseteq V : |S| = k} \text{Influence}(S, G) \)

Our objectives (e.g. edge deletion)

- \(aa, GG \) is Monotone w.r.t. edge set \(EE \)
- \(S^* \) is NOT simple:
- \(\sum_{a \in A} \text{Influence}(a, G \setminus S) \)

1. **Fixing a L.E.G \(X \):**
 - \(\text{Influence}(S \cup v, G) - \text{Influence}(S, G) \)
 - \(= \sum_{x \in X \setminus G \setminus (S \cup e)} \Pr[X \setminus G \setminus (S \cup e)] \times r(a, X) - \sum_{x \in X \setminus G \setminus S} \Pr[X \setminus G \setminus S] \times r(a, X) \)

2. **Fixing a L.E.G \(X \):**
 - \(\geq \)
 - \(\iff \) DONE!

3. **Fixing a source \(a \):**
 - \(\text{Influence}(a \setminus G \setminus (S \cup e)) - \text{Influence}(a, G \setminus S) \)

4. **Fixing a source \(a \):**
 - \(X_{G \setminus (S \cup e)} \neq X_{G \setminus S} \)
Challenges in Analyzing the Objectives

Source Selection

Objective [Kempe ‘03]

\(S, G \) is Monotone w.r.t. node set \(S \)

\(S^* \) is simple.

Influence \((S, G)\)

- Fixing a L.E.G \(X \):
 \[
 \text{Influence}(S \cup v, G) - \text{Influence}(S, G) = \Pr[X | G] \times [r(S \cup v, X) - r(S, X)]
 \]

Common to the two terms above

\[\geq \]

DONE!

- Fixing a source \(a \):
 \[
 \text{Influence}(a, G \setminus S) - \text{Influence}(a, G \setminus S) = \sum_{x \in X_G \setminus (S \cup e)} \Pr[X | G \setminus (S \cup e)] \times r(a, X) - \sum_{x \in X} \Pr[X | G \setminus S] \times r(a, X)
 \]

Our Objectives

(e.g. edge deletion)

\(a, G \setminus S \) is Monotone w.r.t. edge set \(E \)

\(S^* \) is NOT simple.

\[\sum_{a \in A} \text{Influence}(a, G \setminus S) \]

- Fixing a source \(a \):
 \[
 \text{Influence}(a, G \setminus S) - \text{Influence}(a, G \setminus S) = \Pr[X_G \setminus (S \cup e)] \neq X_G \setminus S
 \]

Sums are over different spaces!

Cannot compare summations directly!
Challenges in Analyzing the Objectives

Source Selection objective [Kempe ‘03]

\(SS, GG \) is Monotone w.r.t. node set \(A \setminus S \) is simple:

Our objectives (e.g. edge deletion)

\(aa, GG \setminus S \) is Monotone w.r.t. edge set \(EE \)

\(A^\ast \subseteq S \) is simple:

Fixing a L.E.G. \(X \):

\[
\text{Influence}(S) = \Pr[X|G] \times [r(S \cup v, X) - r(S, X)]
\]

\[
= \sum_{x \in X \setminus G \setminus S(e)} \Pr[X|G \setminus S(e)] \times r(a, X) - \sum_{x \in G \setminus S} \Pr[X|G \setminus S] \times r(a, X)
\]

Common to the two terms above

\[\geq \]

DONE!

\[
X_{G \setminus (S \cup e)} \neq X_{G \setminus S}
\]

Sums are over different spaces!

Cannot compare summations directly!
A Deeper Understanding of LT

• Four Properties:
 1. Within-Space Mapping
 2. Space Inclusion
 3. Across-Space Mapping
 4. Across-Space Probability Mapping

} How is a space of live-edge graphs structured w.r.t. a given edge?

} How are different spaces related w.r.t. a given edge?
A Deeper Understanding of LT

- Four Properties:
 1. Within-Space Mapping
 2. Space Inclusion
 3. Across-Space Mapping
 4. Across-Space Probability Mapping

Exploiting the 4 properties

⇒ Monotonicity

⇒ Supermodularity
Supermodularity

• “Increasing differences” property:

\[f(S \cup e) - f(S) \leq f(T \cup e) - f(T) \]

\(\forall S \subseteq T, e \notin T \)
Supermodularity

- "Increasing differences" property:

\[f(S \cup e) - f(S) \leq f(T \cup e) - f(T) \]
\[\forall S \subseteq T, e \notin T \]

Edge Deletion

- Deleting \((w, x)\) disconnects \(w\) from \(x\) and \(y\)
- Deleting \((w, x)\) disconnects \(w\) from \(x\) ONLY

Edge Addition

- Adding \(e\) connects \(w\) to \(y\) ONLY
- Adding \(e\) connects \(w\) to \(y\) AND \(z\)
Edge Deletion:

A Greedy Algorithm

\[
S^* := \arg\min_{S \subseteq E: |S| = k} \sum_{a \in A} \text{Influence}(a, G \setminus S)
\]

- Minimizing Supermodular \(f(.) \) \(\iff \) Maximizing Submodular \(h(.) = C - f(.) \)

- Greedy algorithm [Nemhauser ’63]: At each iteration, add to \(S^* \) the edge \(e^* \) whose deletion results in the largest decrease in the objective value.

- Approximation guarantee:

\[
h(S^*) \geq (1 - 1/e - \alpha)h(S^{OPT})
\]

\(\alpha \): approx. factor for influence estimation
Edge Deletion: A Superior Performance

MemeTracker Dataset

Relative Influence w.r.t unmodified network

Influence_{k \text{ edges deleted}} / Influence_{no \text{ edges deleted}}

Lower is Better

GreedyCutting
Random
Weights
Betweenness
Eigen
Degree

KDD, NYC August 26th 2014
Elias Khalil
Edge Deletion: A Superior Performance

MemeTracker Dataset

Relative Influence w.r.t. unmodified network

Lower is Better

Influence_{k \ edges \ deleted} \over \text{Influence}_{no \ edges \ deleted}
Edge Deletion: A Superior Performance

MemeTracker Dataset

Relative Influence w.r.t unmodified network

\[\frac{\text{Influence}_{k \text{ edges deleted}}}{\text{Influence}_{\text{no edges deleted}}} \]

Lower is Better
Edge Deletion: A Superior Performance

Influence $k_{edges deleted}$

Influence $no_{edges deleted}$

Relative Influence w.r.t unmodified network

Lower is Better

MemeTracker Dataset

Budget (k)

KDD, NYC August 26th 2014

Elias Khalil
Edge Deletion: A Superior Performance

MemeTracker Dataset

Relative Influence w.r.t unmodified network

\[\frac{\text{Influence}_{k \text{ edges deleted}}}{\text{Influence}_{\text{no edges deleted}}} \]

~2% of edges

Lower is Better

KDD, NYC August 26th 2014

Elias Khalil
Edge Addition: A Modular Approximation

\[S^* := \arg\max_{S \subseteq C: |S| = k} \sum_{a \in A} \text{Influence}(a, G \cup S) \]

- **Modular approximation** [Iyer '13]:
 For each candidate edge \(e^* \) (independently), compute the increase in the objective when \(e^* \) is added to the network. Choose the top-\(k \) edges.

- **Approximation guarantee:**
 \[g(S^*) \leq \beta \left(\frac{1}{1 - \kappa_g} \right) g(S^{OPT}) \]

\(\beta \): approx. factor for influence estimation
\(\kappa_g \): curvature of \(g \)
Edge Addition: A Superior Performance

MemeTracker Dataset

Influence Increase relative to unmodified network

Higher is Better

\[\text{Influence}_{k \text{ edges added}} - \text{Influence}_{\text{no edges added}} \]

KDD, NYC August 26th 2014
Elias Khalil
Edge Addition: A Superior Performance

Influence $\Delta = \frac{\text{Influence}_{k \text{ edges added}} - \text{Influence}_{\text{no edges added}}}{\text{Influence}_{\text{no edges added}}}$

MemeTracker Dataset

Higher is Better

KDD, NYC August 26th 2014
Elias Khalil
Edge Addition: A Superior Performance

MemeTracker Dataset

Influence Increase relative to unmodified network

\[\frac{\text{Influence}_{k \text{ edges added}} - \text{Influence}_{\text{no edges added}}}{\text{Influence}_{\text{no edges added}}} \]

KDD, NYC August 26th 2014
Elias Khalil
Scaling Up!

• Both algorithms perform well
• However, naïve implementations
 $\rightarrow O(|V|^2)$ or worse time complexity:
 \rightarrow Cannot scale to large networks!
• Solution: exploit problem structure
 \rightarrow linear time and space algorithms!
Scaling Up!

• Both algorithms perform well.
• However, naïve implementations → $O(|V|^2)$ or worse time complexity:
 → Cannot scale to large networks!
• Solution: exploit problem structure → linear time and space algorithms!
Scaling Up!

- Both algorithms perform well.
- However, naïve implementations → $O(|V|^2)$ or worse time complexity:
 → Cannot scale to large networks!
- Solution: exploit problem structure → linear time and space algorithms!

Details in next slides

Details in paper

KDD, NYC August 26th 2014

Elias Khalil
Naïve Edge Deletion

- Greedy algorithm sketch:
 1. Sample live-edge graphs; induce subgraphs rooted at sources
 2. For 1 to Budget
 3. For each induced subgraph
 4. For each edge e in subgraph
 5. Evaluate the impact of deleting edge e
 6. Add e^*, the edge with largest average impact, to the solution
 7. Delete e^* from E

Example subgraph
Naïve Edge Deletion

• Greedy algorithm sketch:
 1. Sample live-edge graphs; induce subgraphs rooted at sources
 2. For 1 to Budget
 3. For each induced subgraph
 4. For each edge \(e \) in subgraph
 5. Evaluate the impact of deleting edge \(e \)
 6. Add \(e^* \), the edge with largest average impact, to the solution
 7. Delete \(e^* \) from \(E \)

\[O(|V|) \times O(|V|) \]
Naïve Edge Deletion

• Greedy algorithm sketch:
 1. Sample live-edge graphs; induce subgraphs rooted at sources
 2. For 1 to Budget
 3. For each induced subgraph
 4. For each edge e in subgraph
 5. Evaluate the impact of deleting edge e
 6. Add e^*, the edge with largest average impact, to the solution
 7. Delete e^* from E

Quadratic Time Complexity in $|V|$
Naïve Edge Deletion

• Greedy algorithm sketch:
 1. Sample live-edge graphs; induce subgraphs rooted at sources
 2. For 1 to Budget
 3. For each induced subgraph
 4. For each edge e in subgraph
 5. Evaluate the impact of deleting edge e
 6. Add e^*, the edge with largest average impact, to the solution
 7. Delete e^* from E

Quadratic Time Complexity in $|V|$.

How can we avoid this bottleneck?
Scaling up Edge Deletion

• Observation: Subgraphs induced from live-edge graphs are all **TREES**!

• $\text{Score}(\text{edge } (a, b)) = \#\text{descendants of } b + 1$
Scaling up Edge Deletion

• Observation: Subgraphs induced from live-edge graphs are all **TREES**!

• \(\text{Score}(\text{edge } (a, b)) = \#\text{descendants of } b + 1 \)

Stage 1: Top-Down BFS

![Diagram of a tree with nodes labeled a, b, c, d, e, f, and edges labeled (d, f), (c, e), (b, d), (b, c), (a, b)].
Scaling up Edge Deletion

- Observation: Subgraphs induced from live-edge graphs are all **TREES**!
- \(\text{Score}(\text{edge } (a, b)) = \#\text{descendants of } b + 1 \)
Scaling up Edge Deletion

- Observation: Subgraphs induced from live-edge graphs are all TREES!
- $\text{Score}(edge) = |S| + \text{Supp} + \text{Support} + 1$

Stage 1: Top-Down BFS

Stage 2: Bottom-up Traversal

$O(V^2)$

$O(V)$
Scalability

Running Time (seconds per edge, \log_2)

Number of Nodes (log$_2$)

Edge Deletion
Edge Addition

Linear up to logarithmic factors

2 million edges

32 million edges

KDD, NYC August 26th 2014 Elias Khalil
More Experiments: Deletion

LOWER IS BETTER
More Experiments:
Addition

HIGHER IS BETTER
Conclusions

• We present:
 1. Network **optimization** problems under the LT model
 2. A better **theoretical** understanding of the LT model
 3. **Scalable**, near-optimal algorithms for the problems
 4. **State-of-the-art** experimental performance

Thank you!

lyes@gatech.edu