Machine Learning

Lecture. 2.

Mark Girolami

girolami@dcs.gla.ac.uk

Department of Computing Science
University of Glasgow
Linear Regression

• *Learning* or *Inferring* a functional relationship between a set of attribute variables and associated response or target variables
Linear Regression

• Learning or Inferring a functional relationship between a set of attribute variables and associated response or target variables

• Motivation to use model of relationship to predict unknown target values given new values of attributes
Linear Regression

- *Learning or Inferring* a functional relationship between a set of attribute variables and associated response or target variables
- Motivation to use model of relationship to predict unknown target values given new values of attributes
- How to learn the relationship from finite set of observations?
Linear Regression

• *Learning* or *Inferring* a functional relationship between a set of attribute variables and associated response or target variables

• Motivation to use model of relationship to predict unknown target values given new values of attributes

• How to learn the relationship from finite set of observations?

• How to assess how good model is as a predictor?
Example Prediction Problem

- Predict Long Jump Gold Medal distance based on previous winning performances
Example Prediction Problem

- Predict Long Jump Gold Medal distance based on previous winning performances
- Data available corresponds to distance and year of games
Example Prediction Problem

- Predict Long Jump Gold Medal distance based on previous winning performances
- Data available corresponds to distance and year of games
- Many other attributes also available which are indicative of target variable
Example Prediction Problem

- Predict Long Jump Gold Medal distance based on previous winning performances
- Data available corresponds to distance and year of games
- Many other attributes also available which are indicative of target variable
- However lets see what sort of predictions, if any, can be made taking account only of time elapsed from first games
Example Prediction Problem

- Look at data available by plotting distance against time elapsed
Example Prediction Problem

- Look at data available by plotting distance against time elapsed

Figure 1: Gold Medal Distance for the long jump from 1896 to 2004 plotted against the number of years since the first modern games were held with 1900 being 0 and 1896 being -4. Note that the two world wars interrupt the games in 1914, 1940 & 1944.
Linear Model

- Visually there appears to be a functional relationship between attributes and targets
Linear Model

• Visually there appears to be a functional relationship between attributes and targets

• A class of functionals which maps integers (\mathbb{Z}) to the Real line (\mathbb{R}) has to be considered such that

$$f : \mathbb{Z} \rightarrow \mathbb{R}$$
Linear Model

- Visually there appears to be a functional relationship between attributes and targets.
- A class of functionals which maps integers (\mathbb{Z}) to the Real line (\mathbb{R}) has to be considered such that

$$f : \mathbb{Z} \rightarrow \mathbb{R}$$

- It seems reasonable that a linear relationship exits so assume that

$$f(x; w_0, w_1) = w_1 x + w_0$$

defines our model. The slope w_1 and the intercept w_0 are the free parameters of our model which have to be assigned.
Loss Functions

- We identify the model parameters by considering a Loss Function defining the miss-match between model output $f(x; w_0, w_1)$ and target value t.
Loss Functions

• We identify the model parameters by considering a Loss Function defining the miss-match between model output \(f(x; w_0, w_1) \) and target value \(t \).

• Loss defined for all available input-output example pairs \((x_n, t_n)\) where \(n = 1, \ldots, N \) and in this case \(N = 25 \), the number of game results recorded.
Loss Functions

- We identify the model parameters by considering a Loss Function defining the miss-match between model output $f(x; w_0, w_1)$ and target value t
- Loss defined for all available input-output example pairs (x_n, t_n) where $n = 1, \cdots, N$ and in this case $N = 25$, the number of game results recorded.
- The sample average loss is given as
 \[
 \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(t_n, f(x_n; w_0, w_1))
 \]
Squared-Error Loss

- The notion of *Loss* is quite general and now need a specific loss function
Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function
- Squared Error Loss is a sensible choice - historical significance, also has probabilistic basis
Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function.
- Squared Error Loss is a sensible choice - historical significance, also has probabilistic basis.
- Robust losses based on absolute deviations can also be considered.
Squared-Error Loss

- The notion of Loss is quite general and now need a specific loss function
- Squared Error Loss is a sensible choice - historical significance, also has probabilistic basis
- Robust losses based on absolute deviations can also be considered
- Sample Mean Squared Error (MSE) Loss

\[
\frac{1}{N} \sum_{n=1}^{N} |t_n - f(x_n; w_0, w_1)|^2
\]
Matrix Notation

• We can define the 2×1 dimensional column vector \mathbf{w} and the $N \times 1$ dimensional column vector \mathbf{t} such that

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \quad \& \quad \mathbf{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}$$
Matrix Notation

- We can define the 2×1 dimensional column vector \mathbf{w} and the $N \times 1$ dimensional column vector \mathbf{t} such that

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} \quad \& \quad \mathbf{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}$$

- The $N \times 2$ dimensional matrix \mathbf{X} is defined as

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}$$
Squared-Error Loss

• Using the defined vector & matrix notation the MSE can be written compactly as

\[MSE = \frac{1}{N} (t - Xw)^T (t - Xw) \]
Squared-Error Loss

- Using the defined vector & matrix notation the MSE can be written compactly as

\[
MSE = \frac{1}{N} (t - Xw)^T(t - Xw)
\]

- Tutorial exercise to show that MSE can be written as above
Squared-Error Loss

- Using the defined vector & matrix notation the MSE can be written compactly as

\[MSE = \frac{1}{N}(t - Xw)^T(t - Xw) \]

- Tutorial exercise to show that MSE can be written as above

- Now require to find value of vector, \(w \), which minimises MSE
Minimising MSE

• Find stationary point of MSE by setting gradient of all partial derivatives to zero
Minimising MSE

- Find stationary point of MSE by setting gradient of all partial derivatives to zero

\[
\frac{\partial MSE}{\partial w} = \begin{bmatrix}
\frac{\partial MSE}{\partial w_0} \\
\frac{\partial MSE}{\partial w_1}
\end{bmatrix} = \begin{bmatrix}
-\frac{2}{N} \sum_{n=1}^{N} (t_n - f(x_n; w_0, w_1)) \\
-\frac{2}{N} \sum_{n=1}^{N} (t_n - f(x_n; w_0, w_1)) x_n
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
Stationary Point

• Employing vector & matrix notation the gradient of MSE can be written neatly as
Stationary Point

- Employing vector & matrix notation the gradient of MSE can be written neatly as

\[
\frac{\partial MSE}{\partial w} = -\frac{2}{N} X^T(t - Xw)
\]
Stationary Point

• Employing vector & matrix notation the gradient of MSE can be written neatly as

\[
\frac{\partial MSE}{\partial w} = -\frac{2}{N} X^T (t - Xw)
\]

• Tutorial exercise to show this. Matrix Cookbook on Module website.
Stationary Point

- Employing vector & matrix notation the gradient of MSE can be written neatly as

\[
\frac{\partial \text{MSE}}{\partial w} = -\frac{2}{N} X^T(t - Xw)
\]

- Tutorial exercise to show this. Matrix Cookbook on Module website.

- Is stationary point a minimum, maximum or saddle point?
Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function
Stationary Point

• Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function

• Multi-parameter function use generalisation of above rule
Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function
- Multi-parameter function use generalisation of above rule
- Matrix of all partial second-derivatives, H, requires to be positive-definite i.e. $a^T Ha > 0$ for any a
Stationary Point

- Schoolboy calculus for single variable functions if second-derivatives at stationary point strictly positive, then point is minimum of function
- Multi-parameter function use generalisation of above rule
- Matrix of all partial second-derivatives, H, requires to be positive-definite i.e. $a^T H a > 0$ for any a
- Require expression for Hessian matrix
Stationary Point

• Can obtain matrix of second-partial derivatives of MSE
Stationary Point

- Can obtain matrix of second-partial derivatives of MSE

\[
\frac{\partial^2 MSE}{\partial w \partial w^T} = \begin{bmatrix}
\frac{\partial^2 MSE}{\partial w_0 \partial w_0} & \frac{\partial^2 MSE}{\partial w_0 \partial w_1} \\
\frac{\partial^2 MSE}{\partial w_1 \partial w_0} & \frac{\partial^2 MSE}{\partial w_1 \partial w_1}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
2 & \frac{2}{N} \sum_{n=1}^{N} x_n \\
\frac{2}{N} \sum_{n=1}^{N} x_n & \frac{2}{N} \sum_{n=1}^{N} x_n^2
\end{bmatrix}
\]
Stationary Point

As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$\frac{\partial^2 MSE}{\partial w \partial w^T} = \frac{2}{N} X^T X$$
Stationary Point

• As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$\frac{\partial^2 MSE}{\partial w \partial w^T} = \frac{2}{N} X^T X$$

• If $X^T X$ can be inverted it is positive definite
As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$\frac{\partial^2 MSE}{\partial \mathbf{w} \partial \mathbf{w}^T} = \frac{2}{N} \mathbf{X}^T \mathbf{X}$$

- If \(\mathbf{X}^T \mathbf{X} \) can be inverted it is positive definite.
- Providing \(N \geq D \) then hessian is p.d. and can be inverted.
Stationary Point

• As will become usual in this course we can write the matrix of second-derivatives succinctly as

$$\frac{\partial^2 MSE}{\partial w \partial w^T} = \frac{2}{N} X^T X$$

• If $X^T X$ can be inverted it is positive definite

• Providing $N \geq D$ then hessian is p.d. and can be inverted

• So stationary point of MSE is indeed a minimum... phew..
Least Squares Solution

- As the matrix X^TX is positive-definite it can be inverted and so we obtain the Least-Squares estimate \hat{w}
Least Squares Solution

• As the matrix X^TX is positive-definite it can be inverted and so we obtain the Least-Squares estimate $\hat{\mathbf{w}}$

$$\hat{\mathbf{w}} = (X^TX)^{-1} X^T \mathbf{t}$$
Least Squares Solution

• As the matrix $X^T X$ is positive-definite it can be inverted and so we obtain the Least-Squares estimate \hat{w}

$$\hat{w} = (X^T X)^{-1} X^T t$$

• The Least-Squares solution for Long-Jump Data is

$$\hat{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 276.78 \\ 0.748 \end{bmatrix}$$
Least Squares Solution

- As the matrix X^TX is positive-definite it can be inverted and so we obtain the Least-Squares estimate \hat{w}

$$\hat{w} = (X^TX)^{-1} X^T t$$

- The Least-Squares solution for Long-Jump Data is

$$\hat{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 276.78 \\ 0.748 \end{bmatrix}$$

- Can now employ this model to make predictions
Stationary Point

• With this parameter estimate our predictions for the given target values \hat{t} follow as

$$\hat{t} = X\hat{w} = X(X^TX)^{-1}X^Tt$$
Stationary Point

- With this parameter estimate our predictions for the given target values \hat{t} follow as

$$\hat{t} = X\hat{w} = X (X^TX)^{-1} X^T t$$
Prediction

• What will be the winning distance at the London 2012 Olympic Games?
Prediction

- What will be the winning distance at the London 2012 Olympic Games?

\[\hat{t}_{2012} = x_{2012}^T \hat{w} = [1 \ 112] \hat{w} = [1 \ 112] (X^TX)^{-1} X^T t \]
Prediction

- What will be the winning distance at the London 2012 Olympic Games?

\[
\hat{t}_{2012} = x_{2012}^\top \hat{w} = [1 \ 112] \hat{w} = [1 \ 112] (X^\top X)^{-1} X^\top t
\]

- Linear regression model predicts a gold medal winning distance of \(276.78 + 0.748 \times 112 = 360.5\) inches in London.
Prediction

• What will be the winning distance at the London 2012 Olympic Games?

\[\hat{t}_{2012} = x_{2012}^T \hat{\mathbf{w}} = [1 \ 112] \hat{\mathbf{w}} = [1 \ 112] (X^T X)^{-1} X^T \mathbf{t} \]

• Linear regression model predicts a gold medal winning distance of \(276.78 + 0.748 \times 112 = 360.5 \) inches in London.

• Current Olympic record stands at 350.39 inches and the current World Record was set in 1991 a distance of 352.36 inches.
Prediction

• What will be the winning distance at the London 2012 Olympic Games?

\[\hat{t}_{2012} = x_{2012}^T \hat{w} = [1 \ 112] \hat{w} = [1 \ 112] (X^T X)^{-1} X^T t \]

• Linear regression model predicts a gold medal winning distance of \(276.78 + 0.748 \times 112 = 360.5\) inches in London.

• Current Olympic record stands at 350.39 inches and the current World Record was set in 1991 a distance of 352.36 inches.

• Our prediction seems somewhat optimistic!!!!
Nonlinear Model

- Model is linear in parameters
Nonlinear Model

- Model is linear in parameters
- Can apply nonlinear transformation to inputs providing more flexible model
Nonlinear Model

- Model is linear in parameters
- Can apply nonlinear transformation to inputs providing more flexible model
- But still linear in parameters - provided no additional parameters associated with transform
Nonlinear Model

- Model is linear in parameters
- Can apply nonlinear transformation to inputs providing more flexible model
- But still linear in parameters - provided no additional parameters associated with transform
- For example if a cubic polynomial assumed

\[f(x; w) = w_3 x^3 + w_2 x^2 + w_1 x + w_0 \]

or more generally an arbitrary \(K \)'th order polynomial holds

\[f(x; w) = \sum_{i=0}^{K} w_i x^i \]
Nonlinear Model

- It should be straightforward to see that by now defining the $N \times (K + 1)$ dimensional matrix X such that

$$X = \begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^K \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_N & x_N^2 & \cdots & x_N^K
\end{bmatrix}$$
Nonlinear Model

• It should be straightforward to see that by now defining the $N \times (K+1)$ dimensional matrix X such that

$$X = \begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^K \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_N & x_N^2 & \cdots & x_N^K
\end{bmatrix}$$

• Least Squares solution still holds where now $\hat{\mathbf{w}}$ will be a $(K + 1) \times 1$ column vector
Nonlinear Model

• Nonlinear Model (Linear regression model!!) of order $K = 9$
Nonlinear Model

- Nonlinear Model (Linear regression model!!) of order $K = 9$
Nonlinear Model

• Nonlinear Model (Linear regression model!!) of order $K = 9$

• Is this a better model??... Stay tuned till next week