STATISTICALLY SOUND PATTERN DISCOVERY

Wilhelmiina Hämäläinen
University of Eastern Finland
whamalai@cs.uef.fi

Geoff Webb
Monash University
Australia
geoff.webb@monash.edu

Statistically sound pattern discovery: Problem

IDEAL WORLD

- REAL PATTERNS

REAL WORLD

- PATTERNS FOUND FROM THE SAMPLE (with some tool)

POPULATION

- usually infinite
- clean and accurate

SAMPLE

- may contain noise
Statistically sound pattern discovery: Problem

IDEAL WORLD

REAL PATTERNS

POPULATION
usually infinite
clean and accurate

REAL WORLD

PATTERNS FOUND
FROM THE SAMPLE
(with some tool)

SAMPLE
may contain noise

SSPD tutorial KDD’14 – p. 3
Statistically Sound vs. Unsound DM?

Pattern-type-first:
Given a desired classical pattern, invent a search method.

Method-first:
Invent a new pattern type which has an easy search method

- e.g., an antimonotonic “interestingness” property

Tricks to sell it:
- overload statistical terms
- don’t specify exactly
Statistically Sound vs. Unsound DM?

<table>
<thead>
<tr>
<th>Pattern-type-first:</th>
<th>Method-first:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a desired classical pattern, invent a search method.</td>
<td>Invent a new pattern type which has an easy search method</td>
</tr>
</tbody>
</table>

+ easy to interpret correctly
+ informative
+ likely to hold in future
- computationally demanding

- difficult to interpret
- misleading “information”
- no guarantees on validity
+ computationally easy
Statistically sound pattern discovery: Scope

- Statistical dependency patterns
 - Dependency rules
 - Part I
 (Wilhelmiina)
 - Correlated itemsets
 - Part II
 (Geoff)

- Other patterns?
 - timeseries?
 - graphs?
 - Discussion

- MODELS
 - log-linear models
 - classifiers
Contents

Overview (statistical dependency patterns)

Part I
- Dependency rules
- Statistical significance testing
 Coffee break (10:00-10:30)
- Significance of improvement

Part II
- Correlated itemsets (self-sufficient itemsets)
- Significance tests for genuine set dependencies

Discussion
Events \((X = x)\) and \((Y = y)\) are statistically independent, if \(P(X = x, Y = y) = P(X = x)P(Y = y)\).
Let A, B, C binary variables. Notate $\neg A \equiv (A = 0)$ and $A \equiv (A = 1)$

1. **Dependency rule** $AB \rightarrow C$: must be
 \[
 \delta = P(ABC) - P(AB)P(C) > 0 \text{ (positive dependence)}.
 \]

2. **Full probability model:**
 \[
 \delta_1 = P(ABC) - P(AB)P(C), \\
 \delta_2 = P(A\neg BC) - P(A\neg B)P(C), \\
 \delta_3 = P(\neg ABC) - P(\neg AB)P(C) \text{ and} \\
 \delta_4 = P(\neg A\neg BC) - P(\neg A\neg B)P(C).
 \]
 - If $\delta_1 = \delta_2 = \delta_3 = \delta_4 = 0$, no dependence
 - Otherwise decide from δ_i ($i = 1, \ldots, 4$) (with some equation)
3. Correlated set ABC

- Starting point mutual independence:
 \[P(A = a, B = b, C = c) = P(A = a)P(B = b)P(C = c) \]
 for all \(a, b, c \in \{0, 1\} \)

- different variations (and names)! e.g.
 (i) \(P(ABC) > P(A)P(B)P(C) \) (positive dependence) or
 (ii) \(P(A = a, B = b, C = c) \neq P(A = a)P(B = b)P(C = c) \)
 for some \(a, b, c \in \{0, 1\} \)

+ extra criteria

In addition, conditional independence sometimes useful
\[P(B = b, C = c \mid A = a) = P(B = b \mid A = a)P(C = c \mid A = a) \]
One of the most important problems in the philosophy of natural sciences is – in addition to the well-known one regarding the essence of the concept of probability itself – to make precise the premises which would make it possible to regard any given real events as independent.

A.N. Kolmogorov
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
1. Statistical dependency rules

Requirements for a genuine statistical dependency rule $X \rightarrow A$:

(i) Statistical dependence

(ii) Statistically significant
 • likely not due to chance

(iii) Non-redundant
 • not a side-product of another dependency
 • added value

Why?
Example: Dependency rules on atherosclerosis

1. Statistical dependencies:
 smoking \rightarrow atherosclerosis
 sports \rightarrow \neg atherosclerosis
 ABCA1-R219K $\uparrow\downarrow$ atherosclerosis

2. Statistical significance?
 spruce sprout extract \rightarrow \neg atherosclerosis
 dark chocolate \rightarrow \neg atherosclerosis

3. Redundancy?
 stress, smoking \rightarrow atherosclerosis
 smoking, coffee \rightarrow atherosclerosis
 high cholesterol, sports \rightarrow atherosclerosis
 male, male pattern baldness \rightarrow atherosclerosis
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
2. Variable-based vs. Value-based interpretation

Meaning of dependency rule $X \rightarrow A$

1. Variable-based: dependency between binary variables X and A
 - Positive dependency $X \rightarrow A$ the same as $\neg X \rightarrow \neg A$
 - Equally strong as negative dependency between X and $\neg A$ (or $\neg X$ and A)

2. Value-based: positive dependency between values $X = 1$ and $A = 1$
 - different from $\neg X \rightarrow \neg A$ which may be weak!
Strength of statistical dependence

The most common measures:

1. **Variable-based: leverage**
 \[
 \delta(X, A) = P(XA) - P(X)P(A)
 \]

2. **Value-based: lift**
 \[
 \gamma(X, A) = \frac{P(XA)}{P(X)P(A)} = \frac{P(A|X)}{P(A)} = \frac{P(X|A)}{P(X)}
 \]

 \(P(A|X) = \text{“confidence” of the rule}\)

Remember: \(X \equiv (X = 1)\) and \(A \equiv (A = 1)\)
Contingency table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>$\neg A$</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>$fr(XA) = n[P(X)P(A) + \delta]$</td>
<td>$fr(X\neg A) = n[P(X)P(\neg A) - \delta]$</td>
<td>$fr(X)$</td>
</tr>
<tr>
<td>$\neg X$</td>
<td>$fr(\neg XA) = n[P(\neg X)P(A) - \delta]$</td>
<td>$fr(\neg X\neg A) = n[P(\neg X)P(\neg A) + \delta]$</td>
<td>$fr(\neg X)$</td>
</tr>
<tr>
<td>All</td>
<td>$fr(A)$</td>
<td>$fr(\neg A)$</td>
<td>n</td>
</tr>
</tbody>
</table>

All value combinations have the same $|\delta|$! \iff γ depends on the value combination

\[fr(X) = \text{absolute frequency of } X \]
\[P(X) = \text{relative frequency of } X \]
Example: The Apple problem

Variables: Taste, smell, colour, size, weight, variety, grower, ...

100 apples

(55 sweet + 45 bitter)
Rule RED → SWEET \((Y \rightarrow A)\)

\[P(A|Y) = 0.92, \quad P(\neg A|\neg Y) = 1.0 \]
\[\delta = 0.22, \quad \gamma = 1.67 \]

\[A = \text{sweet}, \quad \neg A = \text{bitter} \]
\[Y = \text{red}, \quad \neg Y = \text{green} \]

Basket 1
- 60 red apples
 - (55 sweet)

Basket 2
- 40 green apples
 - (all bitter)
Rule RED and BIG → SWEET (\(X \rightarrow A\))

\[
P(A|X) = 1.0, \quad P(\neg A|\neg X) = 0.75 \\
\delta = 0.18, \quad \gamma = 1.82
\]

\(X=(\text{red} \land \text{big})\)

\(\neg X=(\text{green} \lor \text{small})\)

Basket 1

40 large red apples (all sweet)

Basket 2

40 green + 20 small red apples (45 bitter)
When the value-based interpretation could be useful? Example

$D=$disease, $X=$allele combination
$P(X)$ small and $P(D|X) = 1.0$

$\Rightarrow \gamma(X, D) = P(D)^{-1}$ can be large

$P(D|\neg X) \approx P(D)$
$P(\neg D|\neg X) \approx P(\neg D)$

$\Rightarrow \delta(X, D) = P(X)P(\neg D)$ small.

Now dependency strong in the value-based but weak in the variable-based interpretation!

(Usually, variable-based dependencies tend to be more reliable)
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
3. **Statistical significance of** $X \rightarrow A$

What is the probability of the observed or a stronger dependency, if X and A were independent? If small probability, then $X \rightarrow A$ likely genuine (not due to chance).

- Significant $X \rightarrow A$ is likely to hold in future (in similar data sets)
- How to estimate the probability??
- How small the probability should be?
 - Fisherian vs. Neyman-Pearsonian schools
 - multiple testing problem
3.1 Main approaches

- **SIGNIFICANCE TESTING**
 - **ANALYTIC**
 - **FREQUENTIST**
 - **BAYESIAN**
 - **EMPIRICAL**

different schools

different sampling models
Analytic approaches

\(H_0: \) \(X \) and \(A \) independent (null hypothesis)

\(H_1: \) \(X \) and \(A \) positively dependent (research hypothesis)

- **Frequentist:** Calculate
 \[p = P(\text{observed or stronger dependency} | H_0) \]

- **Bayesian:**
 (i) Set \(P(H_0) \) and \(P(H_1) \)
 (ii) Calculate \(P(\text{observed or stronger dependency} | H_0) \) and \(P(\text{observed or stronger dependency} | H_1) \)
 (iii) Derive (with Bayes’ rule)
 \[P(H_0 | \text{observed or stronger dependency}) \] and
 \[P(H_1 | \text{observed or stronger dependency}) \]
Analytic approaches: pros and cons

+ p-values relatively fast to calculate
+ can be used as search criteria
 - How to define the distribution under H_0? (assumptions)
 - If data not representative, the discoveries cannot be
generalized to the whole population
 - describe only the sample data or other similar
 samples
 - random samples not always possible (infinite
 population)
Note: Differences between Fisherian vs. Neyman-Pearsonian schools

- significance testing vs. hypothesis testing
- role of nominal p-values (thresholds 0.05, 0.01)
- many textbooks represent a hybrid approach

→ see Hubbard & Bayarri
Empirical approach (randomization testing)

Generate random data sets according to H_0 and test how many of them contain the observed or stronger dependency $X \rightarrow A$.

(i) Fix a permutation scheme (how to express $H_0 +$ which properties of the original data should hold)

(ii) Generate a random subset $\{d_1, \ldots, d_b\}$ of all possible permutations

(iii)

$$p = \frac{|\{d_i|\text{contains observed or stronger dependency}\}|}{b}$$
Empirical approach: pros and cons

+ no assumptions on any underlying parametric distribution
+ can test null hypotheses for which no closed form test exists
+ offers an approach to multiple testing problem → Later
+ data doesn’t have to be a random sample → discoveries hold for the whole population ...
 - ... defined by the permutation scheme
 - often not clear (but critical), how to permutate data!
 - computationally heavy (b: efficiency vs. quality trade-off)
 - How to apply during search??
Note: Randomization test vs. Fisher’s exact test

When testing significance of $X \rightarrow A$

- a natural permutation scheme fixes $N = n$, $N_X = fr(X)$, $N_A = fr(A)$
- randomization test generates some random contingency tables with these constraints
- full permutation test = Fisher’s exact test studies all contingency tables
 - faster to compute (analytically)
 - produces more reliable results

\Rightarrow No need for randomization tests, here!
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 • variable-based
 • value-based
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
3.2 Sampling models

= defining the distribution under H_0

← What do we assume fixed?

- Variable-based dependencies: classical sampling models (Statistics)
- Value-based dependencies: several suggestions (Data mining)
Basic idea

Given a sampling model \mathcal{M}

\mathcal{T} = set of all possible contingency tables.

1. Define probability $P(T_i|\mathcal{M})$ for contingency tables $T_i \in \mathcal{T}$

2. Define an extremeness relation $T_i \succeq T_j$
 - T_i contains at least as strong dependency $X \rightarrow A$
 as T_j does
 - depends on the strength measure, e.g. δ (var-based) or γ (val-based)

3. Calculate $p = \sum_{T_i \succeq T_0} P(T_i|\mathcal{M})$
 (T_0=our table)
Sampling models for variable-based dependencies

3 basic models:

1. Multinomial ($N = n$ fixed)

2. Double binomial ($N = n, N_X = fr(X)$ fixed)

3. Hypergeometric (→ Fisher’s exact test)
 ($N = n, N_A = fr(A), N_X = fr(X)$ fixed)

+ asymptotic measures (like χ^2)
Multinomial model

Independence assumption: In the infinite urn, $p_{XA} = p_X p_A$. ($p_{XA} =$ probability of red sweet apples)
Multinomial model

T_i is defined by random variables $N_{XA}, N_{X¬A}, N_{¬XA}, N_{¬X¬A}$

\[
P(N_{XA}, N_{X¬A}, N_{¬XA}, N_{¬X¬A}|n, p_X, p_A) =
\binom{n}{N_{XA}, N_{X¬A}, N_{¬XA}, N_{¬X¬A}} p_X^{N_X} (1 - p_X)^{n-N_X} p_A^{N_A} (1 - p_A)^{n-N_A}.
\]

\[
p = \sum_{T_i \geq T_0} P(N_{XA}, N_{X¬A}, N_{¬XA}, N_{¬X¬A}|n, p_X, p_A)
\]

- p_X and p_A can be estimated from the data
Double binomial model

Independence assumption: \(p_{A|X} = p_A = p_{A|\neg X} \)

TWO INFINITE URNS:

- a sample of \(fr(X) \) red apples
- a sample of \(fr(\neg X) \) green apples
Double binomial model

Probability of red sweet apples:

\[
P(N_{XA}|fr(X), p_A) = \binom{fr(X)}{N_{XA}} p_A^{N_{XA}} (1 - p_A)^{fr(X) - N_{XA}}
\]

Probability of green sweet apples:

\[
P(N_{\neg XA}|fr(\neg X), p_A) = \binom{fr(\neg X)}{N_{\neg XA}} p_A^{N_{\neg XA}} (1 - p_A)^{fr(\neg X) - N_{\neg XA}}
\]
Double binomial model

T_i is defined by variables N_{XA} and $N_{\neg X A}$.

$$P(N_{XA}, N_{\neg X A}|n, fr(X), fr(\neg X), p_A) =$$

$$\left(\begin{array}{c}
fr(X) \\
N_{XA}
\end{array}\right)\left(\begin{array}{c}
fr(\neg X) \\
N_{\neg X A}
\end{array}\right)p_A^{N_A}(1 - p_A)^{n-N_A}$$

$$p = \sum_{T_i \geq T_0} P(N_{XA}, N_{\neg X A}|n, fr(X), fr(\neg X), p_A)$$
Hypergeometric model (Fisher’s exact test)

How many other similar urns have at least as strong dependency as ours?

OUR URN \(n \) apples
fr(A) sweet + fr(\(\neg A \)) bitter
fr(X) red + fr(\(\neg X \)) green

ALL \(\binom{n}{\text{fr}(A)} \)
SIMILAR URNS
Like in a full permutation test

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>(\neg X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A A A A</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>2</td>
<td>A A A</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>3</td>
<td>A A A</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>4</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>5</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>6</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>7</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>8</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>9</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
<tr>
<td>10</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
<td>(\neg A) (\neg A) (\neg A) (\neg A)</td>
</tr>
</tbody>
</table>

\(n=10 \)

\(fr(X)=6 \)

\(fr(A)=3 \)
Hypergeometric model (Fisher’s exact test)

The number of all possible similar urns (fixed $N = n$, $N_X = fr(X)$ and $N_A = fr(A)$) is

$$
\sum_{i=0}^{fr(A)} \binom{fr(X)}{i} \binom{fr(\neg X)}{fr(A) - i} = \binom{n}{fr(A)}
$$

Now $(T_i \geq T_0) \equiv (N_{XA} \geq fr(XA))$. Easy!

$$
p_F = \sum_{i=0}^{\infty} \frac{\binom{fr(X)}{fr(XA) + i} \binom{fr(\neg X)}{fr(\neg X \neg A) + i}}{\binom{n}{fr(A)}}
$$
Example: Comparison of p-values

fr(X)=50, fr(A)=30, n=100
Example: Comparison of p-values

fr(X)=300, fr(A)=500, n=1000

Fisher
double bin
multinom
Example: Comparison of p-values

<table>
<thead>
<tr>
<th>fr_{XA}</th>
<th>multinomial</th>
<th>double binomial</th>
<th>Fisher (hyperg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1.7e-05</td>
<td>1.8e-05</td>
<td>2.2e-05</td>
</tr>
<tr>
<td>200</td>
<td>2.3e-12</td>
<td>2.2e-12</td>
<td>3.0e-12</td>
</tr>
<tr>
<td>220</td>
<td>1.4e-22</td>
<td>7.3e-23</td>
<td>1.1e-22</td>
</tr>
<tr>
<td>240</td>
<td>2.9e-36</td>
<td>3.0e-37</td>
<td>4.4e-37</td>
</tr>
<tr>
<td>260</td>
<td>1.5e-53</td>
<td>4.2e-56</td>
<td>3.5e-56</td>
</tr>
<tr>
<td>280</td>
<td>1.3e-74</td>
<td>2.9e-80</td>
<td>1.6e-81</td>
</tr>
<tr>
<td>300</td>
<td>9.3e-100</td>
<td>3.5e-111</td>
<td>2.5e-119</td>
</tr>
</tbody>
</table>
Asymptotic measures

Idea: p-values are estimated indirectly

1. Select some “nicely behaving” measure M
 - e.g. M follows asymptotically the normal or the χ^2 distribution
2. Estimate $P(M \geq val)$, where $M = val$ in our data
 - Easy! (look at statistical tables)
 - But the accuracy can be poor
The χ^2-measure

$$\chi^2 = \sum_{i=0}^{1} \sum_{j=0}^{1} \frac{n(P(X = i, A = j) - P(X = i)P(A = j))^2}{P(X = i)P(A = j)}$$

$$= \frac{n(P(X, A) - P(X)P(A))^2}{P(X)P(\neg X)P(A)P(\neg A)} = \frac{n\delta^2}{P(X)P(\neg X)P(A)P(\neg A)}$$

- very sensitive to underlying assumptions!
- all $P(X = i)P(A = j)$ should be sufficiently large
- the corresponding hypergeometric distribution shouldn’t be too skewed
Mutual information

\[MI = \log \frac{P(X|A)P(X|\neg A)P(\neg X|A)P(\neg X|\neg A)}{P(X)P(\neg X)P(A)P(\neg A)} \]

- \(2n \cdot MI \) = log likelihood ratio
- follows asymptotically the \(\chi^2 \)-distribution
- usually gives more reliable results than the \(\chi^2 \)-measure
Comparison: Sampling models for variable-based dependencies

- Multinomial: impractical but useful for theoretical results
- Double binomial: **not exchangeable**
 \[p(X \rightarrow A) \neq p(A \rightarrow X) \text{ (in general)} \]
- Hypergeometric (Fisher’s exact test): recommended, enables efficient search, reliable results
- Asymptotic: often sensitive to underlying assumptions
 - \(\chi^2 \) very sensitive, not recommended
 - \(MI \) reliable, enables efficient search, approximates \(p_F \)
Sampling models for value-based dependencies

Main choices:

1. Classical sampling models but with a different extremeness relation
 - use lift γ to define a stronger dependency
 - Multinomial and Double binomial: can differ much from var-based
 - Hypergeometric: leads to Fisher’s exact test, again!

2. Binomial models + corresponding asymptotic measures
Binomial model 1 (classical binomial test)

Probability of sweet red apples is $p_{XA} = p_X p_A$. If a random sample of n apples is taken, what is the probability to get $fr(XA)$ sweet red apples and $n - fr(XA)$ green or bitter apples?
Binomial model 1 (classical binomial test)

Probability of getting exactly N_{XA} sweet red apples and $n - N_{XA}$ green or bitter apples is

$$p(N_{XA}|n, p_{XA}) = \binom{n}{N_{XA}} (p_{XA})^{N_{XA}} (1 - p_{XA})^{n-N_{XA}}$$

$$p(N_{XA} \geq fr(XA)|n, p_{XA}) = \sum_{i=fr(XA)}^{n} \binom{n}{i} (p_{XA})^{i} (1 - p_{XA})^{n-i}$$

(or $i = fr(XA), \ldots, \min\{fr(X), fr(A)\}$)

- Use estimate $p_{XA} = P(X)P(A)$
- Note: N_X and N_A unfixed
Corresponding asymptotic measure

\(z\)-score:

\[
z_1(X \rightarrow A) = \frac{fr(X, A) - \mu}{\sigma} = \frac{fr(X, A) - nP(X)P(A)}{\sqrt{nP(X)P(A)(1 - P(X)P(A))}}
\]

\[
= \frac{\sqrt{n}\delta(X, A)}{\sqrt{P(X)P(A)(1 - P(X)P(A))}} = \frac{\sqrt{nP(XA)(\gamma(X, A) - 1)}}{\sqrt{\gamma(X, A) - P(X, A)}}.
\]

follows asymptotically the normal distribution
Binomial model 2 (suggested in DM)

Like the double binomial model, but forget the other urn!

CONSIDER ONE FROM TWO INFINITE URNS:

- A sample of \(fr(X) \) red apples
- A sample of \(fr(\neg X) \) green apples
Binomial model 2

\[p(N_{XA} \geq f r(XA) \mid f r(X), P(A)) = \sum_{i=fr(XA)}^{fr(X)} \left(\begin{array}{c} fr(X) \\ i \end{array} \right) P(A)^i P(\neg A)^{fr(X)-i} \]

Corresponding \(z \)-score:

\[z_2 = \frac{fr(XA) - \mu}{\sigma} = \frac{fr(XA) - fr(X)P(A)}{\sqrt{fr(X)P(A)P(\neg A)}} \]

\[= \frac{\sqrt{n} \delta(X, A)}{\sqrt{P(X)P(A)P(\neg A)}} = \frac{\sqrt{fr(X)(P(A \mid X) - P(A))}}{\sqrt{P(A)P(\neg A)}} \]
J-measure

≈ one urn version of MI

$$J = P(XA) \log \frac{P(XA)}{P(X)P(A)} + P(X\neg A) \log \frac{P(X\neg A)}{P(X)P(\neg A)}$$
Example: Comparison of \(p \)-values

\[
\begin{array}{c|c|c}
fr(X) & fr(A) & n = 100 \\
25 & 75 & \\
25 & 25 & \\
\end{array}
\]

![Graph showing comparison of p-values](image)
Comparison: Sampling models for value-based dependencies

- Multinomial, Hypergeometric, classical Binomial + its z-score: $p(X \rightarrow A) = P(A \rightarrow X)$

- Double binomial, alternative Binomial + its z-score: $p(X \rightarrow A) \neq P(A \rightarrow X)$ (in general)

- The alternative Binomial, its z-score and J can disagree with the other measures (only the X-urn vs. whole data)

- z-score easy to integrate into search, but may be unreliable for infrequent patterns \rightarrow (classical) Binomial test in post-pruning improves quality!
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
3.3 Multiple testing problem

The more patterns we test, the more spurious patterns we are likely to accept.

- If threshold $\alpha = 0.05$, there is 5% probability that a spurious dependency passes the test.
- If we test 10 000 rules, we are likely to accept 500 spurious rules!
Solutions to Multiple testing problem

1. Direct adjustment approach: adjust α (stricter thresholds)
 - easiest to integrate into the search
2. Holdout approach: Save part of the data for testing → Webb
3. Randomization test approaches: Estimate the overall significance of all discoveries or adjust the individual p-values empirically
 → e.g. Gionis et al., Hanhijärvi et al.
Contingency table for m significance tests

<table>
<thead>
<tr>
<th></th>
<th>Spurious rule</th>
<th>Genuine rule</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0 true</td>
<td>H_1 true</td>
<td></td>
</tr>
<tr>
<td>Declared significant</td>
<td>V</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>False positives</td>
<td></td>
<td>True positives</td>
<td></td>
</tr>
<tr>
<td>Declared insignificant</td>
<td>U</td>
<td>T</td>
<td>$m - R$</td>
</tr>
<tr>
<td>True negatives</td>
<td></td>
<td>False negatives</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>m_0</td>
<td>$m - m_0$</td>
<td>m</td>
</tr>
</tbody>
</table>
Direct adjustment: Two approaches

(i) Control familywise error rate = probability of accepting at least one false discovery

\[FWER = P(V \geq 1) \]

(ii) Control false discovery rate = expected proportion of false discoveries

\[FDR = E \left[\frac{V}{R} \right] \]

<table>
<thead>
<tr>
<th></th>
<th>spurious rule</th>
<th>genuine rule</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>decl. sign.</td>
<td>(V)</td>
<td>(S)</td>
<td>(R)</td>
</tr>
<tr>
<td>decl. insign</td>
<td>(U)</td>
<td>(T)</td>
<td>(m - R)</td>
</tr>
<tr>
<td>All</td>
<td>(m_0)</td>
<td>(m - m_0)</td>
<td>(m)</td>
</tr>
</tbody>
</table>
(i) Control familywise error rate FWER

Decide $\alpha^* = FWER$ and calculate a new stricter threshold α.

- If tests are mutually independent: $\alpha^* = 1 - (1 - \alpha)^m$
 \Rightarrow Šidák correction: $\alpha = 1 - (1 - \alpha^*)^{\frac{1}{m}}$

- If they are not independent: $\alpha^* \leq m \cdot \alpha$
 \Rightarrow Bonferroni correction: $\alpha = \frac{\alpha^*}{m}$

- conservative (may lose genuine discoveries)
- How to estimate m?
 - may be explicit and implicit testing during search
- Holm-Bonferroni method more powerful
 - but less suitable for the search (all p-values should be known, first)
(ii) Control false discovery rate FDR

Benjamini–Hochberg–Yekutieli procedure

1. Decide $q = FDR$

2. Order patterns r_i by their p-values
 Result r_1, \ldots, r_m such that $p_1 \leq \ldots \leq p_m$

3. Search the largest k such that $p_k \leq \frac{k \cdot q}{m \cdot c(m)}$
 - if tests mutually independent or positively dependent, $c(m) = 1$
 - otherwise $c(m) = \sum_{i=1}^{m} \frac{1}{i} \approx \ln(m) + 0.58$

4. Save patterns r_1, \ldots, r_k (as significant) and reject r_{k+1}, \ldots, r_m
Hold-out approach

Powerful because m is quite small!
Randomization test approaches

1. Estimate the overall significance of discoveries at once
 - e.g. What is the probability to find K_0 dependency rules whose strength is at least min_M?
 - Empirical p-value

\[
p_{\text{emp}} = \frac{|\{d_i \mid K_i \geq K_0\}| + 1}{b + 1}
\]

\(d_0\) original set
\(d_1, \ldots, d_b\) random sets
\(K_1, \ldots, K_b\) numbers of discovered patterns from set \(d_i\)

→ Gionis et al.
2. Use randomization tests to correct individual p-values
 - e.g., How many sets contained better rules than $X \rightarrow A$?

$$p' = \frac{|\{d_i| (S_i \neq \emptyset) \land (\min p(Y \rightarrow B | d_i) \leq p(X \rightarrow A | d_0))\}|}{b + 1},$$

d_0 original set
d_1, \ldots, d_b random sets
S_i = set of patterns returned from set d_i

→ Hanhijärvi
Randomization test approaches

+ dependencies between patterns not a problem → more powerful control over $FWER$

+ one can impose extra constraints (e.g. that a certain pattern holds with a given frequency and confidence)

- most techniques assume *subset pivotality* \approx the complete hypothesis and all subsets of true null hypotheses have the same distribution of the measure statistic

Remember also points mentioned in the single hypothesis testing
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
4. Redundancy and significance of improvement

When \(X \rightarrow A \) is redundant with respect to \(Y \rightarrow A \) (\(Y \subseteq X \))? Improves it significantly?

Examples of redundant dependency rules:

- *smoking, coffee \(\rightarrow \) atherosclerosis*
 - coffee has no effect on *smoking \(\rightarrow \) atherosclerosis*

- *high cholesterol, sports \(\rightarrow \) atherosclerosis*
 - sports makes the dependency only weaker

- *male, male pattern baldness \(\rightarrow \) atherosclerosis*
 - adding *male* hardly any significant improvement
Redundancy and significance of improvement

- Value-based: $X \rightarrow A$ is productive if $P(A|X) > P(A|Y)$ for all $Y \subsetneq X$

- Variable-based: $X \rightarrow A$ is redundant if there is $Y \subsetneq X$ such that $M(Y \rightarrow A)$ is better than $M(X \rightarrow A)$ with the given goodness measure M

 $\iff X \rightarrow A$ is non-redundant if for all $Y \subsetneq X$ $M(X \rightarrow A)$ is better than $M(Y \rightarrow A)$

- When the improvement is significant?
Value-based: Significance of productivity

Hypergeometric model:

\[p(YQ \rightarrow A|Y \rightarrow A) = \sum_i \left(\frac{fr(YQ)}{fr(YQA)+i} \right) \left(\frac{fr(Y\neg Q)}{fr(Y\neg QA)-i} \right) \left(\frac{fr(Y)}{fr(YA)} \right) \]

\approx \text{probability of the observed or a stronger conditional dependency } Q \rightarrow A, \text{ given } Y, \text{ in a value-based model.}

- also asymptotic measures \((\chi^2, MI)\)
Apple problem: value-based

\[p(YQ \rightarrow A | Y \rightarrow A) = 0.0029 \]

20 small red apples (15 sweet)

\(Y=\text{red}, \ Q=\text{large} \)

Basket 1
40 large red apples (all sweet)

Basket 2
40 green apples (all bitter)
Apple problem: variable-based?

\[p(\neg Y \rightarrow \neg A | \neg (Y \land Q) \rightarrow \neg A) = 2.9 \times 10^{-10} \ll 0.0029 \]

Basket 1
- 40 large red apples
 (all sweet)

Basket 2
- 40 green apples
 (all bitter)

20 small red apples
(15 sweet)
Observation

\[
p\left(\neg Y \rightarrow \neg A|\neg(YQ) \rightarrow \neg A\right) \approx \frac{p_Y(Y \rightarrow A)}{p_Y(YQ \rightarrow A)}
\]

Thesis: Comparing productivity of \(YQ \rightarrow A \) and \(\neg Y \rightarrow \neg A \) ≡ redundancy test with \(M = p_F \)!
Part I Contents

1. Statistical dependency rules
2. Variable- and value-based interpretations
3. Statistical significance testing
 3.1 Approaches
 3.2 Sampling models
 3.3 Multiple testing problem
4. Redundancy and significance of improvement
5. Search strategies
5. Search strategies

1. Search for the strongest rules (with γ, δ etc.) that pass the significance test for productivity
 → MagnumOpus (Webb 2005)

2. Search for the most significant non-redundant rules (with Fisher’s p etc.)
 → Kingfisher (Hämäläinen 2012)

3. Search for frequent sets, construct association rules, prune with statistical measures, and filter non-redundant rules??
 ● No way!
 ● closed sets? → redundancy problem
 ● their minimal generators?
Main problem: non-monotonicity of statistical dependence

- $AB \rightarrow C$ can express a significant dependency even if A and C as well as B and C mutually independent
- In the worst case, the only significant dependency involves all attributes $A_1 \ldots A_k$ (e.g. $A_1 \ldots A_{k-1} \rightarrow A_k$)

\Rightarrow 1) A greedy heuristic does not work!
\Rightarrow 2) Studying only simplest dependency rules does not reveal everything!

ABCA1-R219K $\rightarrow \neg$ alzheimer
ABCA1-R219K, female \rightarrow alzheimer
End of Part I

Questions?
Statistically sound pattern discovery
Part II: Itemsets

Wilhelmiina Hämäläinen
Geoff Webb

Overview

- Most association discovery techniques find rules
- Association is often conceived as a relationship between two parts
 - so rules provide an intuitive representation
- However, when many items are all mutually interdependent, a plethora of rules results
- Itemsets can provide a more intuitive representation in many contexts
- However, it is less obvious how to identify potentially interesting itemsets than potentially interesting rules
Rules

bruises?=true → ring-type=pendant
[Coverage=3376; Support=3184; Lift=1.93; p<4.94E-322]

ring-type=pendant → bruises?=true
[Coverage=3968; Support=3184; Lift=1.93; p<4.94E-322]

stalk-surface-above-ring=smooth & ring-type=pendant → bruises?=true
[Coverage=3664; Support=3040; Lift=2.00; p=6.32E-041]

stalk-surface-below-ring=smooth & ring-type=pendant → bruises?=true
[Coverage=3472; Support=2848; Lift=1.97; p=9.66E-013]

stalk-surface-above-ring=smooth & stalk-surface-below-ring=smooth & ring-type=pendant → bruises?=true
[Coverage=3328; Support=2776; Lift=2.01; p=0.0166]

stalk-surface-above-ring=smooth & stalk-surface-below-ring=smooth → ring-type=pendant
[Coverage=4156; Support=3328; Lift=1.64; p=5.89E-178]

stalk-surface-above-ring=smooth & stalk-surface-below-ring=smooth → bruises?=true
[Coverage=4156; Support=2968; Lift=1.97; p=1.47E-156]

stalk-surface-above-ring=smooth → ring-type=pendant
[Coverage=5176; Support=3664; Lift=1.45; p<4.94E-322]

ring-type=pendant → stalk-surface-above-ring=smooth
[Coverage=3968; Support=3664; Lift=1.45; p<4.94E-322]

stalk-surface-below-ring=smooth & ring-type=pendant → stalk-surface-above-ring=smooth
[Coverage=3472; Support=3328; Lift=1.50; p=3.05E-072]
Rules continued

stalk-surface-above-ring=smooth & ring-type=pendant → stalk-surface-below-ring=smooth
[Coverage=3664; Support=3328; Lift=1.49; p=3.05E-072]
bruises?=true → stalk-surface-above-ring=smooth
[Coverage=3376; Support=3232; Lift=1.50; p<4.94E-322]
stalk-surface-above-ring=smooth → bruises?=true
[Coverage=5176; Support=3232; Lift=1.50; p<4.94E-322]
stalk-surface-below-ring=smooth → ring-type=pendant
[Coverage=4936; Support=3472; Lift=1.44; p<4.94E-322]
ring-type=pendant → stalk-surface-below-ring=smooth
[Coverage=3968; Support=3472; Lift=1.44; p<4.94E-322]
bruises?=true & stalk-surface-below-ring=smooth → stalk-surface-above-ring=smooth
[Coverage=3040; Support=2968; Lift=1.53; p=1.56E-036]
stalk-surface-below-ring=smooth → stalk-surface-above-ring=smooth
[Coverage=4936; Support=4156; Lift=1.32; p<4.94E-322]
stalk-surface-above-ring=smooth → stalk-surface-below-ring=smooth
[Coverage=5176; Support=4156; Lift=1.32; p<4.94E-322]
bruises?=true & stalk-surface-above-ring=smooth → stalk-surface-below-ring=smooth
[Coverage=3232; Support=2968; Lift=1.51; p=1.56E-036]
bruises?=true → stalk-surface-below-ring=smooth
[Coverage=3376; Support=3040; Lift=1.48; p<4.94E-322]
stalk-surface-below-ring=smooth → bruises?=true
[Coverage=4936; Support=3040; Lift=1.48; p<4.94E-322]
Itemsets

bruises?=true, stalk-surface-above-ring=smooth, stalk-surface-below-ring=smooth, ring-type=pendant

[Coverage=2776; Leverage=0.1143; p<4.94E-322]

Are rules a good representation?

- An association between two items will be represented by two rules
 - three items – nine rules
 - four items – twenty-eight rules
 - ...

- It may not be apparent that all the resulting rules represent a single multi-item association
But how to find itemsets?

- Association is conceived as deviation from independence between two parts
- Itemsets may have many parts
Main approaches

- Consider all partitions
- Randomisation testing
- Incremental mining
- Information theoretic
Main approaches

• Consider all partitions
• Randomisation testing
• Incremental mining
 – models
• Information theoretic
 – mainly models
 – not statistical
All partitions

- Most rule-based measures of interest relate to difference between the joint frequency and expected frequency under independence between antecedent and consequent
- However itemsets do not have an antecedent and consequent
- Does not work to consider deviation from expectation if all items are independent of each other
 - If $P(x, y) \neq P(x)P(y)$ and $P(x, y, z) = P(x, y)P(z)$ then $P(x, y, z) \neq P(x)P(y)P(z)$
 - Attending KDD14, In New York, AgeIsEven

References: Webb, 2010; Webb, & Vreeken, 2014
Productive itemsets

- An itemset is unlikely to be interesting if its frequency can be predicted by assuming independence between any partition thereof

- \textit{Pregnant, Oedema, AgeIsEven}
 - \textit{Pregnant, Oedema}
 - \textit{AgeIsEven}

- \textit{Male, PoorEyesight, ProstateCancer, Glasses}
 - \textit{Male, ProstateCancer}
 - \textit{PoorEyesight, Glasses}

References: Webb, 2010; Webb, & Vreeken, 2014
Measuring degree of positive association

Measure degree of positive association as deviation from the maximum of the expected frequency under an assumption of independence between any partition of the itemset.

\[\text{leverage}(I) = P(I) - \max_{X \subset I} [P(X)P(I \setminus X)] \]

\[\text{lift}(I) = \frac{P(I)}{\max_{X \subset I} [P(X)P(I \setminus X)]} \]

References: Webb, 2010; Webb, & Vreeken, 2014
Statistical test for productivity

- Null hypothesis: \(\exists X \subseteq I, P(I) \leq P(X)P(I \setminus X) \)
- Use a Fisher exact test on every partition
- Equivalent to testing that every rule is significant
 - \(p(I) = \max_{X \subseteq I} \{ p_F(X \rightarrow I \setminus X) \} \)
- No correction for multiple testing
 - null hypothesis only rejected if corresponding null hypothesis is rejected for every partition
 - this increases the risk of Type 2 rather than Type 1 error

References: Webb, 2010; Webb, & Vreeken, 2014
Redundancy

- If item X is a necessary consequence of another set of items Y then $\{X\} \cup Y$ should be associated with everything with which Y is associated.

- Eg $\text{pregnant} \rightarrow \text{female}$ and $\text{pregnant} \rightarrow \text{oedema}$,
 - $\text{female, pregnant, oedema}$ is not likely to be interesting if pregnant, oedema is known

- Discard itemsets I where $\exists X \subset I$, $Y \subset X$, $P(Y) = P(X)$
 - $I = \{\text{female, pregnant, oedema}\}$
 - $X = \{\text{female, pregnant}\}$
 - $Y = \{\text{pregnant}\}$

- Note, no statistical test...

References: Webb, 2010; Webb, & Vreeken, 2014
Independent productivity

• Suppose that heat, oxygen and fuel are all required for fire.

• heat, oxygen and fuel are associated with fire

• So too are:
 – heat, oxygen
 – heat, fuel
 – oxygen, fuel
 – heat
 – oxygen
 – fuel

• But these six are potentially misleading given the full association

References: Webb, 2010; Webb, & Vreeken, 2014
Independent productivity

- An itemset is unlikely to be interesting if its frequency can be predicted from the frequency of its specialisations.
- If both X and $X \cup Y$ are non-redundant and productive then X is only likely to be interesting if it holds with respect to $\neg Y$.

\[
p(I) = \max_{X \subset I} \left\{ p_F \left(X \rightarrow I \setminus X \mid \land_{Y \in P, I \subset Y} \neg (Y \setminus I) \right) \right\}
\]
- P is the set of all non-redundant and productive patterns.

References: Webb, 2010; Webb, & Vreeken, 2014
Assessing independent productivity

Given *fuel, oxygen, heat, fire*

- to assess *fuel, oxygen, fire*
- check whether association holds in data without *heat*

<table>
<thead>
<tr>
<th>fuel</th>
<th>Oxygen</th>
<th>Heat</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
</tbody>
</table>

References: Webb, 2010
Assessing independent productivity

Given *fuel, oxygen, heat, fire*

- to assess *fuel, oxygen, fire*
- check whether association holds in data without *heat*

<table>
<thead>
<tr>
<th></th>
<th>Oxygen</th>
<th>Heat</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
</tbody>
</table>

References: Webb, 2010
Assessing independent productivity

Given *fuel, oxygen, heat, fire*

- to assess *fuel, oxygen*
- check whether association holds in data without *heat or fire*

<table>
<thead>
<tr>
<th>fuel</th>
<th>Oxygen</th>
<th>Heat</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
</tbody>
</table>

References: Webb, 2010
Assessing independent productivity

Given \textit{fuel, oxygen, heat, fire}

- to assess \textit{fuel, oxygen}
- check whether association holds in data without \textit{heat or fire}

<table>
<thead>
<tr>
<th>fuel</th>
<th>Oxygen</th>
<th>Heat</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>Heat</td>
<td>~Fire</td>
</tr>
<tr>
<td>~fuel</td>
<td>~Oxygen</td>
<td>~Heat</td>
<td>~Fire</td>
</tr>
</tbody>
</table>

References: Webb, 2010
Mushroom

- 118 items, 8124 examples
- 9676 non-redundant productive itemsets ($\alpha=0.05$)
- 3164 are not independently productive

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
<th>Leverage</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>edible=e, odor=n</td>
<td>3408</td>
<td>0.194559</td>
<td><1E-320</td>
</tr>
<tr>
<td>gill-size=b, edible=e</td>
<td>3920</td>
<td>0.124710</td>
<td><1E-320</td>
</tr>
<tr>
<td>gill-size=b, edible=e, odor=n</td>
<td>3216</td>
<td>0.106078</td>
<td><1E-320</td>
</tr>
<tr>
<td>gill-size=b, odor=n</td>
<td>3288</td>
<td>0.104737</td>
<td><1E-320</td>
</tr>
</tbody>
</table>
False Discoveries

- We typically want to discover associations that generalise beyond the given data
- The massive search involved in association discovery results in a massive risk of false discoveries
 - associations that appear to hold in the sample but do not hold in the generating process

Reference: Webb 2007
Bonferroni correction for multiple testing

- Divide critical value by size of search space
 - Eg retail
 - 16470 items
 - Critical value = 0.05/2^{16470} < 5E^{-4000}
 - Use layered critical values
 - Sum of all critical values cannot exceed familywise critical value
 - Allocate different familywise critical values to different itemset sizes
 - \(\frac{\alpha}{2^{|I|-1}} \) divided by all itemsets of size \(|I|\)
 - The critical value for itemset \(I\) is thus \(\frac{\alpha}{2^{|I|-1}(|I|)} \)
 - Eg retail
 - 16470 items
 - Critical value for itemsets of size 2 = \(\frac{0.05}{2^1(\frac{16470}{2})} \) = 1.84E-10

Randomization testing

- Randomization testing can be used to find significant itemsets.
- All the advantages and disadvantages enumerated for dependency rules.
- Not possible to efficiently test for productivity or independent productivity using randomisation testing.

References: Megiddo & Srikant, 1998; Gionis et al. 2007
Incremental and interactive mining

- Iteratively find the most informative itemset relative to those found so far
- May have human-in-the-loop
- Aim to model the full joint distribution
 - will tend to develop more succinct collections of itemsets than self-sufficient itemsets
 - will necessarily choose between one of many potential such collections.

References: Hanhijarvi et al 2009; Lijffijt et al 2014
Belgian lottery

- \{43, 44, 45\}
- 902 frequent itemsets (min sup = 1%)
 - All are closed and all are non-derivable
- KRIMP selects 232 itemsets.
- MTV selects no itemsets.
DOCWORD.NIPS Top-25 leverage itemsets

<table>
<thead>
<tr>
<th>kaufmann,morgan</th>
<th>top,bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>trained,training</td>
<td>san,morgan</td>
</tr>
<tr>
<td>report,technical</td>
<td>kaufmann,mateo</td>
</tr>
<tr>
<td>san,mateo</td>
<td>san,kaufmann,mateo</td>
</tr>
<tr>
<td>mit,cambridge</td>
<td>distribution,probability</td>
</tr>
<tr>
<td>descent,gradient</td>
<td>conference,international</td>
</tr>
<tr>
<td>mateo,morgan</td>
<td>conference,proceeding</td>
</tr>
<tr>
<td>image,images</td>
<td>hidden,trained</td>
</tr>
<tr>
<td>san,mateo,morgan</td>
<td>kaufmann,mateo,morgan</td>
</tr>
<tr>
<td>mit,press</td>
<td>learn,learned</td>
</tr>
<tr>
<td>grant,supported</td>
<td>san,kaufmann,mateo,morgan</td>
</tr>
<tr>
<td>morgan,advances</td>
<td>hidden,training</td>
</tr>
<tr>
<td>springer,verlag</td>
<td></td>
</tr>
</tbody>
</table>

Reference: Webb, & Vreeken, 2014
WORDDOC.NIPS Top-25 leverage rules

kaufmann → morgan
morgan → kaufmann
abstract,morgan → kaufmann
abstract,kaufmann → morgan
references,morgan → kaufmann
references,kaufmann → morgan
abstract,references,morgan → kaufmann
abstract,references,kaufmann → morgan
system,morgan → kaufmann
system,kaufmann → morgan
neural,kaufmann → morgan
neural,morgan → kaufmann
abstract,system,kaufmann → morgan
abstract,system,morgan → kaufmann
abstract,neural,kaufmann → morgan
abstract,neural,morgan → kaufmann
result,kaufmann → morgan
result,morgan → kaufmann
references,system,morgan → kaufmann
neural,references,kaufmann → morgan
neural,references,morgan → kaufmann
abstract,references,system,morgan → kaufmann
abstract,references,system,kaufmann → morgan
abstract,references,result,kaufmann → morgan
abstract,neural,references,kaufmann → morgan

Reference: Webb, & Vreeken, 2014
WORDOC.NIPS Top-25 frequent (closed) itemsets

<table>
<thead>
<tr>
<th>Itemsets</th>
<th>Itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>abstract,references</td>
<td>references,system</td>
</tr>
<tr>
<td>abstract,result</td>
<td>references,set</td>
</tr>
<tr>
<td>references,result</td>
<td>neural,result</td>
</tr>
<tr>
<td>abstract,function</td>
<td>abstract,function,result</td>
</tr>
<tr>
<td>abstract,references,result</td>
<td>abstract,introduction</td>
</tr>
<tr>
<td>abstract,neural</td>
<td>abstract,references,system</td>
</tr>
<tr>
<td>abstract,system</td>
<td>abstract,references,set</td>
</tr>
<tr>
<td>function,references</td>
<td>result,system</td>
</tr>
<tr>
<td>abstract,set</td>
<td>result,set</td>
</tr>
<tr>
<td>abstract,function,references</td>
<td>abstract,neural,result</td>
</tr>
<tr>
<td>neural,references</td>
<td>abstract,network</td>
</tr>
<tr>
<td>function,result</td>
<td>abstract,number</td>
</tr>
</tbody>
</table>

Reference: Webb, & Vreeken, 2014

duane, leapfrog	ekman, hager
americana, periplaneta	lpnn, petek
alessandro, sperduti	petek, schmidbauer
crippa, ghiselli	chorale, harmonet
chorale, harmonization	deerwester, dumais
artery, coronary	harmonet, harmonization
kerszberg, linster	fodor, pylyshyn
nuno, vasconcelos	jeremy, bonet
brasher, krug	ornstein, uhlenbeck
mizumori, postsubiculum	nakashima, satoshi
implantable, pickard	taube, postsubiculum
zag, zig	iceg, implantable
Closure of duane, leapfrog
(all words in all 4 documents)
abstract, according, algorithm, approach, approximation, bayesian, carlo, case, cases, computation, computer, defined, department, discarded, distribution, duane, dynamic, dynamical, energy, equation, error, estimate, exp, form, found, framework, function, gaussian, general, gradient, hamiltonian, hidden, hybrid, input, integral, iteration, keeping, kinetic, large, leapfrog, learning, letter, level, linear, log, low, mackay, marginal, mean, method, metropolis, model, momentum, monte, neal, network, neural, noise, non, number, obtained, output, parameter, performance, phase, physic, point, posterior, prediction, prior, probability, problem, references, rejection, required, result, run, sample, sampling, science, set, simulating, simulation, small, space, squared, step, system, task, term, test, training, uniformly, unit, university, values, vol, weight, zero
Itemsets Summary

- More attention has been paid to finding associations efficiently than to which ones to find
- While we cannot be certain what will be interesting, the following probably won't
 - frequency explained by independence between a partition
 - frequency explained by specialisations
- Statistical testing is essential
- Itemsets often provide a much more succinct summary of association than rules
 - rules provide more fine grained detail
 - rules useful if there is a specific item of interest
- Self-Sufficient Itemsets
 - capture all of these principles
 - support comprehensible explanations for why itemsets are rejected
 - can be discovered efficiently
 - often find small sets of patterns (mushroom: 9,676, retail: 13,663)

Reference: Novak et al 2009
Software

- OPUS Miner can be downloaded from: http://www.csse.monash.edu.au/~webb/Software/opus_miner.tgz
Statistically sound pattern discovery
Current state and future challenges

• Efficient and reliable algorithms for binary and categorical data
 – branch-and-bound style
 – no minimum frequencies (or ‘harmless’ like 5/n)

• Numeric variables
 – impact rules allow numerical consequences (Webb)
 – **main challenge**: Numerical variables in the condition part of rule and in itemset
 • How to integrate an optimal discretization into search?

• How to detect all “redundant” patterns?
• Long patterns
End!

- Questions?

- All material:
 http://cs.joensuu.fi/pages/whamalai/kdd14/ssp
dtutorial.html