A Model of Runaway Evolution of Creative Domains

Oliver Bown,
Design Lab,
The University of Sydney,
NSW 2006, Australia

Email: oliver.bown@sydney.edu.au
Twitter: @olliebown
June 29th Concert of improvised duets between instrumental performers and software systems.
@ Cafe Oto, Dalston, London. 7pm.
http://www.cafeoto.co.uk/

June 30th Tutorial @ NIME2014 Workshops, Goldsmiths.
http://www.nime2014.org/

October 3rd-4th @AIIDE 2014 Workshops. Held at North Carolina State University, Raleigh, North Carolina. (Workshop paper deadline July 10th).
http://www.metacreation.net/mume2014
Why do we make art/music/poetry/etc.?
We don’t know…

but it matters for computational creativity.
Example contributions to theory:

A Traditional View

Cognitive adaptations → Interactions → Further adaptation
A Niche Construction View

Cognitive adaptations -> New cultural niches -> Further adaptation
A Niche Construction View

Cognitive adaptations → New cultural niches → Further adaptation

Study emergence of niches
We make art/music/poetry/etc. for no particular reason (except for some kind of emergent, autopoietic process that made it so).
Something in the population drives a fitness differential.

The fit ones enforce that thing, whatever it is.

Repeat. Reinforce.
The “Lottery Model”

- Broad characterisation of art/music:
 - Costly (e.g., time-consuming)
 - Non-functional (no apparent utility)
 - Undirected (no arrow of progress)
 - But can lead to success
The "Lottery Model"

Economic cycle:

• agents accumulate fixed pay (p)
• non-gamers are taxed (t)
• non-gamers get bonus (b)
• gamers pay fixed cost (c)
• one gamer is chosen at random and wins all of the c payments.
The “Lottery Model”

• So at each time step:
 • Non-gamer earns \((p + b - t)\)
 • Average gamer earns \((p)\)

• If \((b > t)\) then *on average* it is better *not* to play game.
The “Lottery Model”

• Evolutionary cycle:
 • Tournament selection
 • Wealth is inherited by paying a fixed proportion (20%) to offspring, but with a “wealth depreciation coefficient” (0, 0.9, 0.99, 0.999).

Note human-specific aspects of model - transferrable wealth and social norms - offers human-specific evolutionary processes.
The “Lottery Model”

Q: Under what circumstances does the population become dominated by game-playing behaviour?
Non-game player earns \((p + b - t)\)
Average game player earns \((p)\)

Variables
wealth depreciation \((d) = 0.999\)

pay \((p) = 1\)
game-playing cost \((c) = 1\)
non-player bonus \((b) = 1\)

t = taxation

t = taxation

t = taxation

t = 0
\(g = 1\)
\(n = 2\)

t = 0.4
\(g = 1\)
\(n = 1.6\)

t = 0.6
\(g = 1\)
\(n = 1.4\)

proportion of game-players in population (multiple runs superimposed)
Variations and additional genetic variables:

- Allow agents to vote on the non-game player taxation \((t)\)
- Provide an “ability to cheat”
Avg tendency to play game (G) over time.

\[p=1, c=1, b=1, t=\text{avg of } T \text{ votes} \]
p = 1, c = 1, b = 1, d = 0.999, t = avg of T votes
Avg ability to cheat (C) over time.

\[p = 1, \ c = 1, \ b = 1, \ d = 0.999, \ t = \text{avg of T votes} \]
CAVEAT

This is a proof of concept.

But it does demonstrate a mechanism.
Interpretation of model:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth</td>
<td>Quantity that is beneficial and transferrable (e.g., status)</td>
</tr>
<tr>
<td>Game playing</td>
<td>Devoting resources to a wealth-concentration activity</td>
</tr>
<tr>
<td>Taxation</td>
<td>Method of enforcement of the activity</td>
</tr>
<tr>
<td>Lottery (randomness)</td>
<td>The method of selection can be arbitrary...</td>
</tr>
<tr>
<td>Ability to cheat</td>
<td>... but it can also be non-arbitrary</td>
</tr>
</tbody>
</table>
On Randomness (Arbitrariness)

Q: Think about gender. How is it assigned?
A: Random. 50/50 split. Assigned at birth.

Q: Why do we have gender?
A: Power of sexual recombination. Or just a freak transition.

Couldn’t other powerful social structuring principles be assigned by randomness? e.g., boldness versus shyness. Traits are randomly assigned, adaptive behaviour means finding the “role” that suits your traits.
Social simulation models can influence plausibility factors when considering evolutionary origins.

This models shows that a potential evolutionary scenario in which art is evolved-but-functionless has a viable evolutionary mechanism.

Such a scenario would/should impact how we think about computational creativity at the individual level.

More social simulation models please!
Thank you!

oliver.bown@sydney.edu.au
@olliebown