Resourceful Contextual Bandits

Ashwin Badanidiyuru (Cornell → Google Research)
John Langford (MSR-NYC)
Alex Slivkins (MSR-NYC)

COLT 2014
Basics: bandits with IID rewards

- In each round $t = 1, \ldots, T$
 - algorithm picks action $a \in A$
 - reward is drawn indep. from unknown distribution D_a
- Goal: maximize total expected reward (REW)

$$\text{Regret} = \text{OPT} - \text{REW}[\text{algorithm}]$$

- $\text{OPT} = \text{REW} [\text{best all-knowing algorithm}]$
 $$= \text{REW} [\text{best action}]$$

In this setting, knows the D_a's
Example: dynamic pricing

- Algorithm = seller with unlimited supply of items
- In each round $t = 1, \ldots, T$
 - a new customer arrives
 - algorithm picks action: price p_t
 - customer either buys @ p_t or leaves
 - sale happens indep. from unknown probability $S(p_t)$
- Goal: maximize total expected revenue
Example: dynamic pricing

- Algorithm = seller with unlimited supply of items
- In each round $t = 1, \ldots, T$
 - a new customer arrives, with known profile x_t
 - algorithm picks action: price p_t
 - customer either buys @ p_t or leaves
 - sale happens indep. from unknown probability $S(p_t, x_t)$
- Goal: maximize total expected revenue

Extensions:
- limited supply
- customer profile per-round contexts (contextual bandits)
- limited resources

Stop if out of items
High-level picture

limited resources

bandits with IID rewards

contextual bandits

“bandits with knapsacks” (BKS: FOCS’13)

resourceful contextual bandits

contextual bandits with policy sets (LZ: NIPS’07)

Optimal regret for our model
Resourceful contextual bandits

- d limited resources, known budget on each. Stop if some resource is exhausted.
- In each round $t = 1, \ldots, T$
 - context $x_t \in X$ arrives, drawn IID from known D_X
 - algorithm picks action $a_t \in A$
 - outcome (reward r_t, resource consumption $(c_{t,1}, \ldots, c_{t,d})$) is drawn indep. from unknown distribution $D(x_t, a_t)$
- Goal: maximize total expected reward (REW)

Normalization: all per-round rewards and consumptions are in $[0,1]$
Resourceful contextual bandits

- Regret = OPT – REW [algorithm]
- OPT = REW [best all-knowing algorithm]

knows the distributions $D_{(x,a)}$'s
Resourceful contextual bandits

- Regret = $\text{OPT}_\Pi - \text{REW}$ [algorithm]
- $\text{OPT}_\Pi = \text{REW}$ [best *all-knowing* algorithm restricted to Π]

Because of resource constraints, one may have $\text{OPT}_\Pi \gg \text{REW}$ [best fixed policy in Π]

Essentially, $\text{OPT}_\Pi = \text{REW}$ [best fixed *mixture* of policies in Π]

- **Policy** = mapping from contexts to actions
- OPT is relative to a given (sub)set Π of policies

knows the distributions $D(x,a)$'s
Generality of the model

<table>
<thead>
<tr>
<th>Example</th>
<th>Resource</th>
<th>In each round</th>
<th>Reward</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seller</td>
<td>items to sell</td>
<td>one item for sale @price</td>
<td>money</td>
<td>Customer profile</td>
</tr>
<tr>
<td>Employer</td>
<td>budget of money</td>
<td>one task to perform @price</td>
<td>tasks</td>
<td>Worker/task profile</td>
</tr>
<tr>
<td>allocation of ads</td>
<td>advertiser’s budgets</td>
<td>one ad to display (pay-per-click)</td>
<td>clicks</td>
<td>page / user profile</td>
</tr>
</tbody>
</table>

Policy set $\Pi = \text{all policies that can be learned from offline data via given method, e.g. linear regression, decision trees, etc.}$
Related work

- Special cases
 - **No contexts** \implies “bandits with knapsacks”
 Defined & solved in (Badanidiyuru, Kleinberg, S.: FOCS’13).
 Many prior papers on various sub-cases
 - **No resources** \implies contextual bandits with policy sets
 (e.g.: Langford & Zhang: NIPS’07; Dudik et al: UAI’11)
- Concurrent & independent work (Devanur & Agrawal: EC’14)
 Another model for contextual bandits with limited resources:
 more general than ours on limited resources,
 less general than ours on contexts (linear dependence)
Our main result

Algorithm with regret

\[O(1 + \frac{\text{OPT}_\Pi}{B}) \sqrt{dKT \log(dKT|\Pi|)} \]

This regret is optimal in several ways:

- all constraints (incl. time) scaled by \(\alpha \) ⇒ regret scaled by \(\sqrt{\alpha} \)
- \(\text{OPT}_\Pi \leq O(B) \) ⇒ regret \(\tilde{O}(\sqrt{KT}) \)
- \(\sqrt{\log |\Pi|} \) dependence is optimal (even without resources)

Caveat: algorithm is (very) computationally inefficient
New challenges

Due to *limited resources*:

- maximizing expected *per-round* reward is not the right goal. must think about expected total reward *over all rounds*
- best all-knowing algorithm is not a fixed policy in Π, but (essentially) a *mixture* of policies in Π

Due to *contexts*:

- trivial reduction to prior work on special case of *no contexts*: policies in Π are “meta-arms” \Rightarrow regret scales as $\sqrt{|\Pi|}$
- Whereas our regret scales as $\log |\Pi|$. For that, each round must explore many policies at once!
Algorithm (outline)

• Explore-exploit tradeoff:
 adapt exploration to observations, explore & exploit at once
• Goal: zoom in on optimal mixture of policies in Π
• In each round t,
 • pick a plausibly optimal mixture M (given observations so far)
 • with low probability pick action a_t u.a.r.,
 else draw policy $\pi \sim M$, pick action $a_t = \pi(\text{context } x_t)$
 • pick M so as to explore every policy $\pi' \in \Pi$ at once:
 $a_t = \pi'(x_t)$ with “near-optimal” probability
Open questions

• Optimal regret and good running time
 • Resolved for the special cases of no contexts (prior work) and no resources (concurrent & independent: ICML ‘14)

• Many open questions (even) for the special case of no contexts
 • beyond IID environment: change over time (no prior work)
 • regret bounds are not tight for important special cases
 • if actions are prices, how to discretize them?
 very tricky even for a single limited resource, open for multiple limited resources (e.g. products for sale)