Circadian gene expression patterns on the periphery depend on genotype

Rok Kosir
Center for Functional Genomics and Bio-chips
Faculty of Medicine
University of Ljubljana
Slovenia
THE CIRCADIAN CLOCK AND MOUSE STRAINS

- CIRCADIAN CLOCKs
 - Evolutionary adaptation
 - Affect physiological processes
 - Hierarchical structure

- MOUSE STRAINS
 - Biomedical models
 - Many different strains
 - Genetic variability

Are there differences in circadian gene expression between strains.
CIRCADIAN GENE EXPRESSION IN MOUSE STRAINS 129SvPas AND C57BL/6

- Sampling of mice every 4h.
- Liver and adrenal glands.
- Measure expression of genes using qPCR.

CIRCADIAN EXPERIMENT

129SvPas
Liver
Adrenal gland
qPCR
Analysis and comparison of gene expression patterns

C57BL/6J
Liver
Adrenal gland
qPCR
MAJOR CORE CLOCK AND METABOLIC OUTPUT GENE EXPRESSION DIFFERENCES IN ADRENALS OF 129SvPas AND C57BL/6

- Liver differs in *Bmal1* and *Cry1*.

Genes of interest

Core clock
- *Bmal1*, *Per1*, *Per2*, *Per3*, *Cry1*, *Cry2*

Transcription factors
- *Dbp*, *Dec1*, *Dec2*, *Car*, *Pgc-1a*, *Ppar’s*, *RevERBa*

Metabolic genes
- *Cyp7*, *Cyp11*, *Cyp17*, *Cyp21*, *Cyp39*, *Cyp51*, *Por*, *Hmgcr*

Circadian expression profiles

![Graphs showing circadian expression profiles for Bmal1 and Dbp in adrenal glands under LD conditions.]
MAJOR CORE CLOCK AND METABOLIC OUTPUT GENE EXPRESSION DIFFERENCES IN ADRENALS OF 129SvPas AND C57BL/6

- Liver differs in *Bmal1* and *Cry1*.

Genes of interest

Core clock

Bmal1, Per1, Per2, Per3, Cry1, Cry2

Transcription factors

Dbp, Dec1, Dec2, Car, Pgc-1a, Ppar’s, RevERBa

Metabolic genes

Cyp7, Cyp11, Cyp17, Cyp21, Cyp39, Cyp51, Por, Hmgcr

Circadian expression profiles
DIFFERENCES IN PEAK EXPRESSION (PHASE) ARE MOST PROMINENT FOR METABOLIC GENES

- Adrenal glands, LD

![Graphs showing gene expression patterns for Bmal1 and Dbp](image-url)
DIFFERENCES IN PEAK EXPRESSION (PHASE) ARE MOST PROMINENT FOR METABOLIC GENES

- Adrenal glands, LD

![Graphs showing differences in peak expression](image-url)
Could differences in peak expression be explained by genomic variation of 129 and C57BL/6?

To answer this:
- Data on structural variation of the three available 129 strains and comparison to the reference strain C57BL/6
- Database resources: Mouse Genomes Db (SANGER) and dbVar (NCBI)
- Deeper analysis on the subset of genes of interest
Could differences in peak expression be explained by genomic variation of 129 and C57BL/6?

To answer this:
- Data on structural variation of the three available 129 strains and comparison to the reference strain C57BL/6
- Database resources: Mouse Genomes Db (SANGER) and dbVar (NCBI)
- Deeper analysis on the subset of genes of interest

- Core clock genes
- Steroid metabolism and regulation
- Light perception
- HPA axis (hormone synthesis, receptors)
- Light transduction to the SCN
- Light response in the SCN
Could differences in peak expression be explained by genomic variation of 129 and C57BL/6?

To answer this:
- Data on structural variation of the three available 129 strains and comparison to the reference strain C57BL/6
- Database resources: Mouse Genomes Db (SANGER) and dbVar (NCBI)
- Deeper analysis on the subset of genes of interest

Core clock genes
- Light perception
- Light transduction to the SCN
- Light response in the SCN

Steroid metabolism and regulation

HPA axis (hormone synthesis, receptors)

201 genes

- 129S1
- 129S5
- 129P2
- C57BL/6J
C57BL6 and 129 strains differ in over 20,000 SNVs and over 150 structural variants.

Structural variation

Genomic location of SV in 129 strains

- **129 strain**
 - P2OlaHsd
 - S1SvlmlJ
 - S5SvEvBrd

Number of SV

- Introns: 150
- Promoters: 50
- Splice sites: 10

% of GOI with SV = 24.71%

SNV

Number and location of SNP

- Coding: 1,000
- Five UTR: 500
- Introns: 1,500
- Promoters: 200
- Three UTR: 100

% of GOI with SNP = 76.12%
Several SNV variants reside in clock–dependent promoters of metabolic output and circadian genes

ChipSeq data:
Koike et al., Science 19 October 2012
DNA VARIATIONS IN GENES THAT SHOWED DIFFERENTIAL CIRCADIAN EXPRESSION IN C57BL/6 AND 129 MICE

<table>
<thead>
<tr>
<th>Gene</th>
<th>Promoter mutations</th>
<th>Structural variants</th>
<th>SNVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>129 strain</td>
<td>P2</td>
<td>S1</td>
<td>S5</td>
</tr>
<tr>
<td>Per2</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>RevERBa</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bmal1</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Cyp11</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cyp17</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cyp51</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WHAT COULD EXPLAIN THE DIFFERENT CIRCADIAN PATTERNS OBSERVED IN MOUSE STRAINS?
WHAT COULD EXPLAIN THE DIFFERENT CIRCADIAN PATTERNS OBSERVED IN MOUSE STRAINS?
WHAT COULD EXPLAIN THE DIFFERENT CIRCADIAN PATTERNS OBSERVED IN MOUSE STRAINS?

- Adrenal clock
- Transcriptional factors
- Cyp51
WHAT COULD EXPLAIN THE DIFFERENT CIRCADIAN PATTERNS OBSERVED IN MOUSE STRAINS?

- **Adrenal clock**
 - **Transcriptional factors**
 - **Cyp51**
- **retina**
 - **Opn4**
- **SCN**
 - **Camk2b, Egr1, Grin2c, Ltpr3, Ssfa2**
- **Pituitary**
 - **Nr3c1 - GR**
- **ADRENAL GLAND**
 - **Tspo, Gnb4, Pbx1, Nr5a1 (SF-1), Chrb4, Nr1d1, Nr1d2**

Gene with discovered nonsynonymous mutations.
CONCLUSION

- Circadian expression of many core clock and metabolic output genes differs between 129 and C57Bl/6 mouse strains. Most variations were observed in adrenal glands under LD, where several CYPs exhibit crucial differences in peak expression (phase).

- Core clock and metabolic genes that vary in gene expression 129 to C57Bl/6 gene expression harbor numerous DNA variants in promoter, intron and coding regions.

- The genomes of the three 129 strains investigated are genetically very similar. Many SNVs and structural variants lie at the same location in the genome.

- These findings are relevant for future chronopharmacology studies since the genotype could crucially affect the circadian expression of drug metabolizing genes.
Acknowledgments

prof. dr. Damjana Rozman
Center for functional genomics and bio-chips
Faculty of Medicine

doc. ddr. Jure Ačimovič
dr. Anja Korenčič
Institute of Biochemistry
Faculty of Medicine

dr. Ursula Prosenc Zmrzljak
Institute of Oncology Ljubljana

dr. Martina Perše
Ksenja Kodra
Institute of pathology
Faculty of Medicine

Funding:
P1-0104: Functional genomics and biotechnology for health
J7-4053: Functional genomics of cholesterol homeostasis: the role of lanosterol 14alpha-demethylase in development of metabolic disorders
Thank you for your attention!
Kosir et al, IUBMB Life 2013