Transitive Re-identification

Yulia Brand1 \quad Tamar Avraham2 \quad Michael Lindenbaum2

1Electrical Engineering Department
2Computer Science Department
Technion - I.I.T. Haifa, Israel

This research was supported by the MAGNET program in the Israeli ministry of industry and commerce, by the Israeli ministry of science and by the E. and J. Bishop research fund.

BMVC 2013
ReLDentification (ReID)

Recognizing individuals over different camera views (we focus on ReID based on appearance based cues)

- **Camera A, time t**
- **Camera B, time t+Δt**

Motivation

- **lower images**: courtesy of Marco Cristani
Appearance-based ReIDentification methods:

Learning based methods:
- require a training set
- classification is with a classifier or a metric learned on the training set
- *camera-invariant* or *camera-specific*, depending on the used training set

Direct methods:
- do not depend on any training set
- classification is based on pre-defined distance metric
- always *camera-invariant*

perform better for “camera-specific” scenarios:
ReID benefits from training with corresponding appearance-pairs captured by specific camera pairs, as the background, illumination, resolution and pose are camera dependent.
RelDentification

Learning based methods perform better for “camera-specific” scenarios:

- ICT (Implicit Camera Transfer) by Avraham et al (ECCV Re-Id 2012)
- SDALF (Symmetry-Driven Accumulation of Local Features) by Farenzena et al (CVPR 2010) and Bazzani et al (CVIU 2013)
- performance tested on 2 cameras from the SAIVT-SoftBio dataset
RelDentification

Learning method: ICT

- Camera A
- Camera B
- F
- C
- Binary SVM with RBF kernel, using Decision values

Direct method: SDALF

- Image A
 - (a) localizing meaningful body parts
 - (b) weighted HSV histogram
 - (c) MSCR - maximally stable color regions
 - (d) RHSP - recurrent highly structured patches
 => matching SDALF descriptors

Motivation

Given a site with N cameras C_1, C_2, \ldots, C_N, we may ReID either by:

1. applying a direct method

2. applying a learning based method where distinct inter-camera training sets must be collected and annotated for each camera-pair. This is impractical.
Motivation

We aim at reducing the number of required direct inter-camera training sets from $O(N^2)$ to $O(N)$ by suggesting a transitive algorithm which uses inter-camera training sets only for $N - 1$ camera-pairs $(C_i, C_{i+1}), i = 1, \ldots, N - 1$, and infers a RelD classifier for any other camera-pair in the system.

By applying the transitive algorithm:

By recursively applying the transitive algorithm:

directly trainable pairs

non-directly trainable pairs
Motivation

When a new camera is added to a set of N previously installed cameras, with the proposed transitive approach, collecting data for only one pair is required.
The Transitive Algorithm

- We focus on a camera triplet case \([A B C]\).
The Transitive Algorithm

- Given two training sets S_{AB}, S_{BC} associated with camera-pairs (A, B) and (B, C), respectively, we would like to infer a classifier for the (A, C) camera-pair, for which S_{AC} is missing.
Expanding the learning based method – the **Naive** solution: training the \((A, C)\) classifier with \(S_{AB} \cup S_{BC}\).

Our goal is to find a more effective use of the available training sets that will decrease this performance gap.
The Transitive ReID algorithm (TRID) establishes a path between the non-directly trainable camera pair \((A, C)\) by marginalization over a “connecting element”, the domain of possible appearances in camera \(B\).

\[
P(Y_{AC}|x_A, x_C) = \sum_{y_{AB}\in\{0,1\}} \sum_{y_{BC}\in\{0,1\}} \int_{x_B\in\mathbb{R}^d} P(Y_{AC}, Y_{AB} = y_{AB}, Y_{BC} = y_{BC}, x_B | x_A, x_C) \, dx_B
\]

\[
P(Y_{AC}|x_A, x_C) = \sum_{y_{AB}\in\{0,1\}} \sum_{y_{BC}\in\{0,1\}} \left[\int_{x_B\in\mathbb{R}^d} P(Y_{AC}, Y_{AB} = y_{AB}, Y_{BC} = y_{BC} | x_A, x_B, x_C) f_{x_B}(x_B) \, dx_B \right]
\]
The Transitive ReID algorithm (TRID) establishes a path between the non-directly trainable camera pair \((A, C)\) by \textit{marginalization} over a “\textit{connecting element}”, the domain of possible appearances in camera \(B\).

\[
P(Y_{AC}|x_A, x_C) = \frac{\int_{x_B} P(Y_{AB}|x_A, x_B)P(Y_{BC}|x_B, x_C) f_{X_B}(x_B) \, dx_B}{1 - \int_{x_B} P(Y_{AB}|x_A, x_B)P(Y_{BC}|x_B, x_C) f_{X_B}(x_B) \, dx_B}
\]
The Transitive Algorithm

\[P(Y_{AC} | x_A, x_C) = \frac{\int_{x_B} P(Y_{AB} | x_A, x_B) P(Y_{BC} | x_B, x_C) f_{X_B}(x_B) \, dx_B}{1 - \int_{x_B} P(Y_{AB} | x_A, x_B) P(Y_{BC} | x_B, x_C) f_{X_B}(x_B) \, dx_B} \]

- \(P(Y_{AB} | x_A, x_B) \) - probability for a match in camera-pair \((A, B) \).

- Any classifier can be used here provided that it can be modified to output probability.

- TRID uses the ICT algorithm by training two ICT ReID classifiers. The SVM decision values are converted to probability estimates using a sigmoid according to Platt’s method.
The Transitive Algorithm

\[
P(Y_{AC}|x_A, x_C) = \frac{\int_{x_B} P(Y_{AB}|x_A, x_B)P(Y_{BC}|x_B, x_C) f_{X_B}(x_B) \, dx_B}{1 - \int_{x_B} P(Y_{AB}|x_A, x_B)P(Y_{BC}|x_B, x_C) f_{X_B}(x_B) \, dx_B}
\]

- \(f_{X_B}(x_B) \) is a multi-dimensional probability density function.
- Can be estimated by methods for density estimation using all \(x_B \in S_B \).
- However, estimating high-dimensional density is hard and the integration is computationally costly.
- Thus, in TRID the integral is approximated by a sum relying on the smoothness of the probability functions.

\[
P(Y_{AC}|x_A, x_C) \approx \frac{1}{|S_B|} \sum_{x_B \in S_B} P(Y_{AB}|x_A, x_B)P(Y_{BC}|x_B, x_C)
\]

\[
1 - \frac{1}{|S_B|} \sum_{x_B \in S_B} P(Y_{AB}|x_A, x_B)P(Y_{BC}|x_B, x_C)
\]
Synthetic Experiment 1

$X_A \times X_B$

$X_B \times X_C$

$X_A \times X_C$

Recognition %

$P(Y_{AC}|x_A, x_C)$:

Naive ICT

ICT trained on AC data

TRID
Synthetic Experiment 2

Motivation

The Transitive Alg.

Experiments

Summary & Future Work

\[x_A \times x_B \]

\[x_B \times x_C \]

\[x_A \times x_C \]

\[P(Y_{AC}|x_A, x_C): \]

Naive ICT
ICT trained on AC data
TRID
SAIVT-SoftBio Experiment

- Testing TRID requires an annotated dataset associated with at least 3 stationary cameras.
- Common ReID benchmark datasets (VIPeR, CAVIAR4REID, iLIDs MCTS, ETHZ) are unsuitable for our set-up.
- Multi-camera surveillance database named SAIVT-SoftBio presented by Bialkowski et al:

![Diagram of the SAIVT-SoftBio database layout with eight cameras labeled C1 to C8.]

SAIVT-SoftBio Experiment

Motivation

The Transitive Alg.

Experiments

SAIVT-SoftBio Experiment
SAIVT-SoftBio Experiment

\[[A \ B \ C] = C3 \ C5 \ C7 \]

Recognition %

- ICT trained on AC data
- Naive ICT
- TRID
- SDALF

Graph showing recognition percentage against rank score.
Introduction

Motivation

The Transitive Alg.

Experiments

SAIVT-SoftBio Experiment

![Graphs showing recognition percentage for different datasets and methods](image)

- **[A B C] = C3 C5 C7**
- **[A B C] = C1 C5 C7**
- **[A B C] = C1 C5 C3**
- **[A B C] = C1 C3 C8**

Legend:
- ICT trained on AC data
- Naive ICT
- TRID
- SDALF
Summary

• When performing ReID in multi-camera site, we do not have to choose between the less accurate direct method and the computationally expensive learning based method. We may perform limited learning, such that requires reasonable resources. We have shown that transitivity using such learning performs well for the ReID task.

• A specific algorithm based on marginalization was suggested: the TRID - which presents a new approach of transitivity in ReID.

• The accuracy of the TRID is superior to that of a state-of-the-art non-learning based approach.

• The TRID algorithm is in fact a general framework that may be combined with different probabilistic classifiers (not necessarily ICT) and of course different features.
Future Work

- Improve the approximation of the transitive integral.
- Transitively use indirect training sets to strengthen direct learning when the set of direct annotated pairs is small, but not empty.
- Test the effect of recursively applying the TRID algorithm, and to study the deterioration of the performance as a function of the number of cameras.
- Generalize the TRID algorithm beyond the scope of ReID to other domain adaptation tasks.
Thank-You.

The Matlab source code of TRID as well as of the ICT are available at: http://www.cs.technion.ac.il/~tammya/Reidentification.html.