Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms

Lihong Li
Wei Chu
John Langford
Xuanhui Wang

Yahoo! Labs

WSDM 2011, Hong Kong
Yahoo-User Interaction

CONTRIBUTION

Unbiased offline evaluation for this interactive process

CONTEXT

Unbiased offline evaluation for this interactive process

ACTION

Unbiased offline evaluation for this interactive process

REWARD

Unbiased offline evaluation for this interactive process

POLICY

Unbiased offline evaluation for this interactive process
Outline

- News recommendation as a contextual bandit
- Unbiased offline evaluation
- Experiments
- Conclusions
Today Module @ Yahoo! Front Page

A small pool of articles chosen by editors

“Featured Article”

Few drugs developed for super bacteria

Doctors are struggling to fight a lethal bacteria that is "resistant to virtually every antibiotic." ➤ Where it's found

- Acinetobacter baumannii
- Do flu vaccines work?
- H1N1 still worrisome

1 - 4 of 32
Challenge: “Explore or Exploit?”

- Objective: to maximize click-through rate (CTR)
- Only displayed articles have user click feedback

EXPLOIT (choose *good* articles to maximize CTR)

EXPLORE (choose *novel* articles to improve CTR est.)

How to trade off?

Same in advertising, search, …
Contextual Bandit Formulation

K-armed “contextual bandit” [Langford & Zhang, 2008]

Observe K arms A and “context” x_t

Select $a_t \in A$

Receive reward $r_t \in [0,1]$

Goal: maximize $\sum_{t=1}^{T} r_t$

In Today Module:

A: available articles

x_t: user features

a_t: displayed article

r_t: 1 for click, 0 for no click

Key Challenge

No reward feedback

For unselected arms
Outline

- News recommendation as a contextual bandit

- Unbiased offline evaluation

- Experiments

- Conclusions
Offline Evaluation of Bandit Algorithms

• Want to estimate: \(V(\pi) := \mathbb{E}_x [r(x, \pi(x))] \)

• Why offline evaluation
 • Cheap and risk-free!
 • Avoid frequent bucket tests
 • Replicable / fair comparisons

\(V(\pi) :\mathbb{E}_x [r(x, \pi(x))] \)
Common/Prior Evaluation Approaches

\[
\begin{align*}
\langle x_1, a_1, r_1 \rangle & \\
\langle x_L, a_L, r_L \rangle & \\
M & \\
\end{align*}
\]

Reward simulator:
\[
\hat{r}(x,a) \approx E[r|x,a]
\]

this (difficult) step is often biased

unreliable evaluation

In contrast, our approach
- avoids explicit user modeling \(\Rightarrow\) simple
- gives unbiased evaluation results \(\Rightarrow\) reliable
Our Evaluation Method: “Replay”

Want to estimate \(V(\pi) := \mathbb{E}_x \left[r(x, \pi(x)) \right] \)

Key requirement for data collection: \(a_i \sim \text{unif}(A) \)

For \(i = 1, 2, \ldots, L \):

- reveal \(x_i \)
- choose \(\hat{a}_i = \pi(x_i) \)
- reveal \(r_i \) only if \(\hat{a}_i = a_i \) (a "match")

Finally, output \(\hat{V} = \frac{K}{L} \sum_{i=1}^{L} r_i \cdot I(\hat{a}_i = a_i) \)
Theoretical Guarantees

- **Thm 1**: Our estimator is unbiased
 - Mathematically, \(V(\pi) = \mathbb{E}[\hat{V}] \)
 - So on average \(\hat{V} \) reflects real, online performance
Outline

- News recommendation as a contextual bandit
- Unbiased offline evaluation
- Experiments
- Conclusions
Case Study in Today Module

- Data:
 - Large volume of real user traffic in Today Module

- Policies being evaluated:
 - EMP [Agarwal et al. 2009]
 - SEMP/CEMP: personalized models
 - Use policies’ online bucket CTR as “truth”

- Random bucket data for evaluation:
 - 40M visits, K ~ 20 on average
 - Use it to offline-evaluate policies’ CTR

Are they close?
Unbiasedness (Article nCTR)

The offline estimate is indeed unbiased!
Unbiasedness *(Daily nCTR)*

The offline estimate is indeed unbiased!

Estimated nCTR

Recorded Online nCTR

Ten Days in November 2009
Recall our theoretical error bound:

Thm 2 (error bound): \(V(\pi) - \hat{V} = O(\sqrt{K/L}) \)
When Business Rules Exist

- Human editors may overrule bandit algorithm’s recommendations
- Have roughly the same multiplicative impacts on algorithm’s CTR

\[
\frac{\text{offlineCTR}(\pi_{\text{EMP}})}{\text{onlineCTR}(\pi_{\text{EMP}})}
\]

Can still reveal relative performance!
Outline

- News recommendation as a contextual bandit
- Unbiased offline evaluation
- Experiments
- Conclusions
Extensions

- What if we don’t have uniformly random data?
 - Cost constraints, system constraints, etc.
 - Can use importance reweighting [Strehl, Langford, Li, Kakade, 2011]
 - “Doubly robust” tech. for variance reduction [Li, Dudik, Langford, 2011]

- What if K is too large?
 - Pre-filter unpromising candidates [Moon et al. 2010]

- Open issues
 - incorporating history-dependent constraints
Take-Home Messages

- Interactive machine learning is common on Web
- We investigated an offline evaluation method that
 - gives unbiased result (with low variance)
 - enjoys fast error decay rate (with more data)
 - is shown accurate using Y! Today Module traffic
 - avoids frequent bucket tests that are risky/costly