Efficient Indexing of Repeated n-Grams

Samuel Huston1
Alistair Moffat2
W. Bruce Croft1

1Center for Intelligent Information Retrieval, University of Massachusetts Amherst

2University of Melbourne
Outline

• Definitions and Motivation

• Single CPU Indexing
 – “Standard” one pass indexing approach
 – Benefits of a second pass

• Massive Data
 – Parallel implementations
 – Fixing the problem

• Experiments using 1.5TB of English text
n-Gram Indexes

• Definition:
 – An n-gram is a sequence of n adjacent words
 – A word may be represented as a variable length string or as an integer
 – For speed of execution and simplicity of analysis we use a 32 bit integer to represent each word

• Motivation for n-gram indexes
 – Searching for similar documents
 – Identification of reused, duplicated or plagiarized text
 – A variety of linguistic tasks; parse trees, POS tagging, ...
Repeated n-Gram Indexes

• In most of these tasks infrequent n-grams are uninteresting
 – Only index n-grams that occur at least m times
 – Using a minimum threshold m will help improve retrieval speed by significantly reducing the size of the final index
 – As n increases, fraction of n-grams that are infrequent also increases
Outline

• Definitions and Motivation
• Single CPU Indexing
 – “Standard” one pass indexing approach
 – Benefits of a second pass
• Massive Data
 – Parallel implementations
 – Fixing the problem
• Experiments using 1.5TB of English text
Disk Based One Pass

Indexing Algorithm

• For each n-gram in sequence
 – Annotate with document position and any other weightings
 – Pass to sort phase

• Sort to collect like n-grams

• Index creation
 – Discard n-grams that do not appear m times
 – Write out n-gram posting lists
Disk Based One Pass

- Space Complexity
 - Input data size: N symbols
 - Intermediate data size: $(n+1) \times N$ symbols
 - Output data size << intermediate data size

- For example
 - $n = 10, \ N = 1 \text{ Trillion} = 4 \text{ TB}$
 - Intermediate space required up to **44 TB**

Huston 2011
Disk Based One Pass

• Time Complexity
 – Number of items to be sorted does not change with n
 – But as n increases, intermediate data grows larger
 – Additional time is spent reading and writing larger temporary files that contain intermediate data
Peak Disk Requirements

- With any one pass algorithm
 - All n-grams must be passed to sort phase
 - Nothing can be discarded
- What about two passes?

Huston 2011
HASH BASED Filter

• During a first pass collect a b bit hash value for each n-gram

• The size of this file is now independent of n

• Any hash value that occurs fewer than m times corresponds to n-grams that can be discarded
HASH BASED Filtered Indexing

Pre-processed Corpus

First Pass

File 1
- Sort + check
- m-frequent hash values

File 2

File 3
- n-gram + positions filtered against File 2
- Sort + check
- m-frequent n-gram index

All hash values

Huston 2011
Multiple Passes?

• SPEX (Bernstein and Zobel 2006)
 – An iterative filtering approach
 – Observe that each n-gram contains two $n-1$-grams

 The quick brown ➔ The quick brown

• A series of filters is built, $k = 1, ..., n-1$ using $n-1$ passes

• Compared to the HASH BASED approach
 – File 1 is eliminated
 – File 2 is directly created in memory
 – But the corpus is read n times
 – And File 3 might dominate space usage anyway

Huston 2011
Space Usage for Hash Based Two Pass

<table>
<thead>
<tr>
<th>n</th>
<th>f</th>
<th>File 1</th>
<th>File 2</th>
<th>File 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$3/4$</td>
<td>34 GB</td>
<td>13 GB</td>
<td>96 GB</td>
</tr>
<tr>
<td>5</td>
<td>$5/9$</td>
<td>34 GB</td>
<td>10 GB</td>
<td>107 GB</td>
</tr>
<tr>
<td>8</td>
<td>$1/2$</td>
<td>34 GB</td>
<td>9 GB</td>
<td>144 GB</td>
</tr>
</tbody>
</table>

- **Space usage**
 - File 1 stores a hash value for each n-gram
 - File 2 stores a hash value for each unique repeated n-gram
 - File 3 stores n-gram and location for each repeated n-gram

- **$N = 8$ Billion 32-bit symbols, 32GB of data**
- **$b = 34$ bits**
- **f** is the fraction of the sequence to be indexed
 - Values of f are estimated using TREC Clueweb-B
Distributions of Repeated \(n \)-grams in TREC ClueWeb-B

% of Sequence

\(n \)

1 Billion Symbols or Words

Repeat

Multi

Single

Huston 2011
Single CPU Runtime, $n=8$, $m=2$
Outline

• Definitions and Motivation
• Single CPU Indexing
 – “Standard” one pass indexing approach
 – Benefits of a second pass
• Massive Data
 – Parallel implementations
 – Fixing the problem
• Experiments using 1.5TB of English text
Distributed HASH-BASED TWO-PASS

- Massive Data **requires** distributed processing
 - E.g. MapReduce or Sun Grid Engine

Diagram

- **Pre-processed Corpus**
 - **First Pass**: n-gram hash values
 - **Second Pass**: m-frequent n-grams and positions
 - **Merge**: m-frequent hash values
 - **Sort + Check**: m-frequent n-gram index
 - **File 1**
 - **File 2**
 - **File 3**

Huston 2011
HASH BASED Distributed Algorithm

• All parts of the filter (File 2) must be replicated across all processing nodes

• As the input data sequence increases
 – The size of the hash filter will increase with the final vocabulary size
 – Eventually the filter will grow too large to fit into RAM
 – And filter is randomly accessed...

• Hash based methods cannot be scalable!
LOCATION BASED Filtering

• Corpus locations are used to determine which n-grams to discard
 – No longer need actual hash values in application of the filter

• Filter is applied piece-wise

• Filter is distributed evenly across processing nodes
 – Each node processes a contiguous subset of locations
Space Usage of LOCATION BASED Filtering

<table>
<thead>
<tr>
<th>n</th>
<th>f</th>
<th>File 1</th>
<th>File 2</th>
<th>File 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3 / 4</td>
<td>68 GB</td>
<td>25 GB</td>
<td>96 GB</td>
</tr>
<tr>
<td>5</td>
<td>5 / 9</td>
<td>68 GB</td>
<td>20 GB</td>
<td>107 GB</td>
</tr>
<tr>
<td>8</td>
<td>1 / 2</td>
<td>68 GB</td>
<td>18 GB</td>
<td>144 GB</td>
</tr>
</tbody>
</table>

- File 1 now stores N hash values and locations
- File 2 now stores a location for each repeated n-gram
- File 3 still stores n-gram and location for each repeat
- Peak disk usage determined by File 3
Outline

• Definitions and Motivation
• Single CPU Indexing
 – “Standard” one pass indexing approach
 – Benefits of a second pass
• Massive Data
 – Parallel implementations
 – Fixing the problem
• Experiments using 1.5TB of English text
Experimental Setup

• Corpus
 – ClueWeb-B TREC collection, 1.5 TB
 – Words translated into numerical values, document boundaries ignored

• Two separate computing platforms
 – Cluster of 32 Intel dual-core PCs, 2GB RAM / core
 – Cluster of 60 Intel 8-core PCs, 2GB RAM / core
 – Network attached storage is used in both cases

• Replication
 – Single CPU experiments: 10 times each
 – Distributed experiments: 5 times each

• Hash table implemented as in-RAM bit vector
 – 33 bit address used, 1GB total space, leaving 1GB for other use
Elapsed Runtime, $n=8$, $m=2$
Space Usage, $n=8$, $m=2$
TREC ClueWeb-B Experiments

- Experimental Setup and Collection Information

<table>
<thead>
<tr>
<th></th>
<th>Half</th>
<th>Whole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus Size (TB)</td>
<td>0.715</td>
<td>1.46</td>
</tr>
<tr>
<td>Sequence Length (x 10^9)</td>
<td>20.15</td>
<td>40.7</td>
</tr>
<tr>
<td>Numerical Data Size (GB)</td>
<td>75.1</td>
<td>150.7</td>
</tr>
<tr>
<td>Grams required (n, m)</td>
<td>8, 2</td>
<td>8, 2</td>
</tr>
<tr>
<td>Processors (p)</td>
<td>50</td>
<td>101</td>
</tr>
<tr>
<td>N / p (x 10^6)</td>
<td>402.9</td>
<td>402.9</td>
</tr>
</tbody>
</table>
Full TREC ClueWeb-B Experiments

<table>
<thead>
<tr>
<th></th>
<th>Disk Based</th>
<th>Location Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus Size</td>
<td>Half</td>
<td>Half</td>
</tr>
<tr>
<td>Elapsed Time (sec x 10³)</td>
<td>8.5</td>
<td>12.38</td>
</tr>
<tr>
<td>Peak Disk Usage (GB)</td>
<td>417.4</td>
<td>159.9</td>
</tr>
<tr>
<td>Final Index Size (GB)</td>
<td>103.0</td>
<td>103.0</td>
</tr>
</tbody>
</table>

Disk Based is faster
Full TREC ClueWeb-B Experiments

<table>
<thead>
<tr>
<th>Corpus Size</th>
<th>Disk Based</th>
<th>Location Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed Time (sec x 10^3)</td>
<td>8.5</td>
<td>12.38</td>
</tr>
<tr>
<td>Peak Disk Usage (GB)</td>
<td>417.4</td>
<td>159.9</td>
</tr>
<tr>
<td>Final Index Size (GB)</td>
<td>103.0</td>
<td>103.0</td>
</tr>
</tbody>
</table>

Disk Based is faster

Location Based is more compact
Full TREC ClueWeb-B Experiments

<table>
<thead>
<tr>
<th></th>
<th>Disk Based</th>
<th>Location Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus Size</td>
<td>Half</td>
<td>Half</td>
</tr>
<tr>
<td>Elapsed Time (sec x 10^3)</td>
<td>8.5</td>
<td>12.38</td>
</tr>
<tr>
<td>Peak Disk Usage (GB)</td>
<td>417.4</td>
<td>159.9</td>
</tr>
<tr>
<td>Final Index Size (GB)</td>
<td>103.0</td>
<td>103.0</td>
</tr>
</tbody>
</table>

Disk Based is faster

Location Based is more compact

Location Based also scales well
Discussion + Conclusions

• **Disk Based One Pass** – Non-Filtered approach
 – Clearly the fastest approach
 – Straight forward scalable parallelization
 – But disk consumption grows with n

• **Location Based Two Pass** – Filtered approach
 – Most efficient space usage – disk consumption not linked to n
 – Time scalable for single CPU and in a distributed environment
 – Designed for parallelization
 – Provides alternative compromise for finding repeated n-grams
Questions and Comments
SPEX Filtered Indexing

Pre-processed Corpus

Filter Construction Passes

1-Filter

2-Filter

...

Final Pass

File 3

n-gram + positions filtered against File 2

Sort + Check

m-frequent n-gram Index

Huston 2011
Distributions of Repeated n-grams

Randomly generated Zipfian data

GOV2 English textual Data

Term Frequency vs. Term Rank in Frequency Table

Huston 2011
Distributions of Repeated n-grams in TREC ClueWeb-B

<table>
<thead>
<tr>
<th>n</th>
<th>250 M Symbols / Words</th>
<th>1,000 M Symbols / Words</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Multi</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>26.2</td>
<td>9.5</td>
</tr>
<tr>
<td>4</td>
<td>40.9</td>
<td>10.4</td>
</tr>
<tr>
<td>5</td>
<td>48.4</td>
<td>9.9</td>
</tr>
<tr>
<td>6</td>
<td>51.9</td>
<td>9.5</td>
</tr>
<tr>
<td>7</td>
<td>53.7</td>
<td>9.2</td>
</tr>
<tr>
<td>8</td>
<td>54.9</td>
<td>9.1</td>
</tr>
<tr>
<td>9</td>
<td>55.9</td>
<td>8.9</td>
</tr>
<tr>
<td>10</td>
<td>56.7</td>
<td>8.8</td>
</tr>
<tr>
<td>20</td>
<td>61.8</td>
<td>8.0</td>
</tr>
<tr>
<td>30</td>
<td>65.0</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Huston 2011
Full TREC ClueWeb-B Experiments

<table>
<thead>
<tr>
<th></th>
<th>Disk Based</th>
<th>Location Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus Size (TB)</td>
<td>0.715</td>
<td>0.715</td>
</tr>
<tr>
<td>Grams required (n, m)</td>
<td>8, 2</td>
<td>8, 2</td>
</tr>
<tr>
<td>Sequence Length (x 10^9)</td>
<td>20.15</td>
<td>20.15</td>
</tr>
<tr>
<td>Numerical Data Size (GB)</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>Processors (p)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>N / p (x 10^6)</td>
<td>402.9</td>
<td>402.9</td>
</tr>
<tr>
<td>Elapsed Time (sec x 10^3)</td>
<td>8.5</td>
<td>12.38</td>
</tr>
<tr>
<td>Peak Disk Usage (GB)</td>
<td>417.4</td>
<td>159.9</td>
</tr>
<tr>
<td>Final Index Size (GB)</td>
<td>103.0</td>
<td>103.0</td>
</tr>
</tbody>
</table>
TREC ClueWeb-B
Recurrence Statistics, $n=8$, $m=2$

- Corpus Size (Billions of Symbols)
 - 1
 - 20.15
 - 40.7

- Correlation
 - Repeat
 - Multi
 - Single

Huston 2011
Future Problems

• Investigate higher values of m
 – Will change relative sizes of File 1 and File 3

• Other data sources are likely to produce different degrees of recurrence
 – How varied are other English corpora?

• Un-ordered n-gram variations may also be of interest
 – Likely to have fewer discarded n-grams

• n-gram index compression schemes
 – Vocabulary dominates the space usage