Numerical exploration-exploitation tradeoff for large scale function optimization

Rémi Munos

INRIA Lille - Nord Europe
Currently on leave at MSR-NE
http://researchers.lille.inria.fr/~munos/

LSOLDM 2013, Cumberland Lodge
Initial motivation

Monte-Carlo Tree Search in computer-go

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node of the tree search.
UCB applied to Trees

Uses Upper Confidence Bound (UCB) algorithm [Auer et al., 2002] at each node of the tree

\[B_j \overset{\text{def}}{=} X_{j,n_j} + \sqrt{\frac{2 \log(n_i)}{n_j}}. \]

Intuition:
- Explore first the most promising branches
- Average converges to max
 - Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu, Hu, Marcus, 2005]
 - UCB applied to Trees (UCT) [Kocsis and Szepesvári, 2006]
The MoGo program [Gelly et al., 2006]

Use hierarchy of UCB bandits (UCT) [Kocsis and Szepesvári, 2006]

Features:
- Monte-Carlo evaluation
- Asymmetric tree expansion
- Anytime algo
- Use of features

Very strong program!

MCTS and UCT very successful
No finite-time guarantee for UCT

Problem: at each node, the rewards are not i.i.d.
Consider the tree:

The left branches seem better than right branches, thus are explored for a **very** long time before the optimal leaf is eventually reached.

The regret is disastrous:

\[\mathbb{E} R_n = \Omega(\exp(\exp(\ldots \exp(1) \ldots))) + O(\log(n)). \]

See [Coquelin and Munos, 2007]
Optimism in the face of uncertainty

“Numerical exploration-exploitation tradeoff”: perform search in simulation using finite numerical resources.

Outline:

- Optimistic optimization of a deterministic Lipschitz functions
- 4 extensions:
 - Locally smooth functions,
 - Tractable algorithm
 - Unknown smoothness,
 - Noisy evaluations
Optimization of a deterministic Lipschitz function

Problem: Find online the maximum of $f : X \to R$, assumed to be Lipschitz:

$$|f(x) - f(y)| \leq \ell(x, y).$$

Protocol:
- For each time step $t = 1, 2, \ldots, n$ select a state $x_t \in X$
- Observe $f(x_t)$
- Return a state $x(n)$

Loss:

$$r_n = f^* - f(x(n)),$$

where $f^* = \sup_{x \in X} f(x)$.
Lipschitz property → the evaluation of f at x_t provides a first upper-bound on f.

$Lipschitz optimization$ $Local smoothness$ $Hierarchical partitioning$ $Unknown smoothness$ $Noisy evaluations$
Example in 1d (continued)

New point \rightarrow refined upper-bound on f.
Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”
Several issues

1. Lipschitz assumption is too strong
2. Finding the optimum of the upper-bounding function may be hard!
3. What if we don’t know the metric ℓ?
4. How to handle noise?
Local smoothness property

Assumption: \(f \) is "locally smooth" around its max. w.r.t. \(\ell \) where \(\ell \) is a semi-metric (symmetric, and \(\ell(x, y) = 0 \iff x = y \): For all \(x \in \mathcal{X} \),

\[
 f(x^*) - f(x) \leq \ell(x, x^*).
\]
Local smoothness is enough!

Optimistic principle only requires:
- a true bound at the maximum
- the bounds gets refined when adding more points
Deterministic Optimistic Optimization (DOO) builds a hierarchical partitioning of the space where cells are refined according to their upper bounds.

- For \(t = 1 \) to \(n \),
 - Define an upper bound for each cell:
 \[
 B_i = f(x_i) + \text{diam}_\ell(X_i)
 \]
 - Select the cell with highest bound
 \[
 I_t = \arg\max_i B_i.
 \]
 - Expand \(I_t \): refine the grid and evaluate \(f \) in children cells
 - Return \(x(n) \overset{\text{def}}{=} \arg\max\{x_t\}_{1 \leq t \leq n} f(x_t) \)
Near-optimality dimension

Define the **near-optimality dimension** of f as the smallest $d \geq 0$ such that $\exists C, \forall \epsilon$, the set of ϵ-optimal states

$$X_\epsilon \overset{\text{def}}{=} \{ x \in X, f(x) \geq f^* - \epsilon \}$$

can be covered by $C\epsilon^{-d}$ ℓ-balls of radius ϵ.

Lipschitz optimization Local smoothness Hierarchical partitioning Unknown smoothness Noisy evaluations
Example 1:
Assume the function is piecewise linear at its maximum:

\[f(x^*) - f(x) = \Theta(||x^* - x||). \]

Using \(\ell(x, y) = ||x - y|| \), it takes \(O(\epsilon^0) \) balls of radius \(\epsilon \) to cover \(X_\epsilon \). Thus \(d = 0 \).
Example 2:

Assume the function is locally quadratic around its maximum:

\[f(x^*) - f(x) = \Theta(||x^* - x||^2). \]

For \(\ell(x, y) = ||x - y|| \), it takes \(O(\epsilon^{-D/2}) \) balls of radius \(\epsilon \) to cover \(X_\epsilon \) (of size \(O(\epsilon^{D/2}) \)). Thus \(d = D/2 \).
Example 2:

Assume the function is locally quadratic around its maximum:

\[f(x^*) - f(x) = \Theta(||x^* - x||^2) \]

For \(\ell(x, y) = ||x - y||^2 \), it takes \(O(\epsilon^0) \) \(\ell \)-balls of radius \(\epsilon \) to cover \(X_\epsilon \). Thus \(d = 0 \).
Example 3:

Assume the function has a square-root behavior around its maximum:

\[f(x^*) - f(x) = \Theta(||x^* - x||^{1/2}) \]

For \(\ell(x, y) = ||x - y||^{1/2} \) we have \(d = 0 \).
Example 4:

Assume $\mathcal{X} = [0, 1]^D$ and f is locally equivalent to a polynomial of degree $\alpha > 0$ around its maximum (i.e. f is α-smooth):

$$f(x^*) - f(x) = \Theta(||x^* - x||^\alpha)$$

Consider the semi-metric $\ell(x, y) = ||x - y||^\beta$, for some $\beta > 0$.

- If $\alpha = \beta$, then $d = 0$.
- If $\alpha > \beta$, then $d = D(\frac{1}{\beta} - \frac{1}{\alpha}) > 0$.
- If $\alpha < \beta$, then the function is not locally smooth wrt ℓ.
Lipschitz optimization Local smoothness Hierarchical partitioning Unknown smoothness Noisy evaluations

Analysis of DOO (deterministic case)

Assume that the ℓ-diameters of the nodes of depth h decrease exponentially fast with h (i.e., $\text{diam}(h) = c\gamma^h$, for $c > 0 \gamma < 1$).

Example: $\mathcal{X} = [0, 1]^D$ and $\ell(x, y) = \|x - y\|^\beta$ for some $\beta > 0$.

Theorem 1.
The loss of DOO is

$$r_n = \begin{cases} \left(\frac{c}{1-\gamma^d}\right)^{1/d} n^{-1/d} & \text{for } d > 0, \\ c\gamma^{n/C-1} & \text{for } d = 0. \end{cases}$$

(Remember that $r_n \overset{\text{def}}{=} f(x^*) - f(x(n))$).
About the local smoothness assumption

Assume f satisfies $f(x^*) - f(x) = \Theta(||x^* - x||^\alpha)$.

Use DOO with the semi-metric $\ell(x, y) = ||x - y||^\beta$:

- If $\alpha = \beta$, then $d = 0$: the true “local smoothness” of the function is known, and exponential rate is achieved.
- If $\alpha > \beta$, then $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right) > 0$: we under-estimate the smoothness, which causes more exploration than needed.
- If $\alpha < \beta$: We over-estimate the true smoothness and DOO may fail to find the global optimum.

DOO heavily depends on our knowledge of the true local smoothness.
Experiments [1]

\(f(x) = \frac{1}{2}(\sin(13x) \sin(27x) + 1) \) satisfies the local smoothness assumption with

- \(\ell_1(x, y) = 14|x - y| \) (i.e., \(f \) is globally Lipschitz), \(d = 1/2 \)
- \(\ell_2(x, y) = 222|x - y|^2 \) (i.e., \(f \) is locally quadratic), \(d = 0 \)
Experiments [2]

Using $\ell_1(x, y) = 14|x - y|$ (i.e., f is globally Lipschitz). $n = 150$.

The trees T_n built by DOO after $n = 150$ evaluations.
Experiments [3]

Using $\ell_2(x, y) = 222|x - y|^2$ (i.e., f is locally quadratic). $n = 150$.

The trees T_n built by DOO after $n = 150$ evaluations.
Experiments [4]

<table>
<thead>
<tr>
<th>n</th>
<th>uniform grid</th>
<th>DOO with ℓ_1 ($d = 1/2$)</th>
<th>DOO with ℓ_2 ($d = 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.25×10^{-2}</td>
<td>2.53×10^{-5}</td>
<td>1.20×10^{-2}</td>
</tr>
<tr>
<td>100</td>
<td>8.31×10^{-3}</td>
<td>2.53×10^{-5}</td>
<td>1.67×10^{-7}</td>
</tr>
<tr>
<td>150</td>
<td>9.72×10^{-3}</td>
<td>4.93×10^{-6}</td>
<td>4.44×10^{-16}</td>
</tr>
</tbody>
</table>

Loss r_n for different values of n for a uniform grid and DOO with the two semi-metric ℓ_1 and ℓ_2.
What if the smoothness is unknown?

Previous algorithms heavily rely on the knowledge or the local smoothness of the function (i.e. knowledge of the best metric).

Question: When the smoothness is unknown, is it possible to implement the optimistic principle for function optimization?
DIRECT algorithm [Jones et al., 1993]

Assumes f is Lipschitz but the Lipschitz constant L is unknown.

The DIRECT algorithm expands simultaneously all nodes that may potentially contain the maximum for some value of L.

Be optimistic for all L
Illustration of DIRECT

The sin function and its upper bound for $L = 2$.
Illustration of DIRECT

The sin function and its upper bound for $L = 1/2$.
Limitations of DIRECT

- No finite-time analysis (only the consistency property $\lim_{n \to \infty} r_n = 0$ in [Finkel and Kelley, 2004])
- Global Lipschitz assumption is too strong!

We want to extend to

- any function **locally smooth** w.r.t. ℓ,
- for **any semi-metric** ℓ
- and provide performance guarantees.
Simultaneous Optimistic Optimization (SOO)

[Munos, 2011]

- Expand several leaves simultaneously
- SOO expands at most one leaf per depth
- SOO expands a leaf only if its value is larger that the value of all leaves of same or lower depths.
- At round t, SOO does not expand leaves with depth larger than $h_{\text{max}}(t)$

Be optimistic at all scales
SOO algorithm

Input: the maximum depth function $t \mapsto h_{\text{max}}(t)$

Initialization: $\mathcal{T}_1 = \{(0, 0)\}$ (root node). Set $t = 1$.

while True **do**

Set $\nu_{\text{max}} = -\infty$.

for $h = 0$ to min(depth(\mathcal{T}_t), $h_{\text{max}}(t)$) **do**

Select the leaf $(h, j) \in \mathcal{L}_t$ of depth h with max $f(x_{h,j})$ value

if $f(x_{h,i}) > \nu_{\text{max}}$ **then**

Expand the node (h, i), Set $\nu_{\text{max}} = f(x_{h,i})$, Set $t = t + 1$

if $t = n$ **then** return $x(n) = \arg \max_{(h,i) \in \mathcal{T}_n} x_{h,i}$

end if

end for

end while.
Lipschitz optimization
Local smoothness
Hierarchical partitioning
Unknown smoothness
Noisy evaluations
Lipschitz optimization
Local smoothness
Hierarchical partitioning
Unknown smoothness
Noisy evaluations
<table>
<thead>
<tr>
<th>Lipschitz optimization</th>
<th>Local smoothness</th>
<th>Hierarchical partitioning</th>
<th>Unknown smoothness</th>
<th>Noisy evaluations</th>
</tr>
</thead>
</table>

![Graph with points and line segments](image-url)
Lipschitz optimization
Local smoothness
Hierarchical partitioning
Unknown smoothness
Noisy evaluations
<table>
<thead>
<tr>
<th>Lipschitz optimization</th>
<th>Local smoothness</th>
<th>Hierarchical partitioning</th>
<th>Unknown smoothness</th>
<th>Noisy evaluations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipschitz optimization</td>
<td>Local smoothness</td>
<td>Hierarchical partitioning</td>
<td>Unknown smoothness</td>
<td>Noisy evaluations</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
<table>
<thead>
<tr>
<th>Lipschitz optimization</th>
<th>Local smoothness</th>
<th>Hierarchical partitioning</th>
<th>Unknown smoothness</th>
<th>Noisy evaluations</th>
</tr>
</thead>
</table>

![Diagram with blue dots and circles]
Performance of SOO

Theorem 2.
For any semi-metric ℓ such that

- f is locally smooth w.r.t. ℓ
- The ℓ-diameter of cells of depth h is $c\gamma^h$
- The near-optimality dimension of f w.r.t. ℓ is $d = 0$,

by choosing $h_{\text{max}}(n) = \sqrt{n}$, the expected loss of SOO is

$$r_n \leq c\gamma^{\sqrt{n}/C-1}$$

In the case $d > 0$ a similar statement holds with $\mathbb{E}r_n = \tilde{O}(n^{-1/d})$.
Performance of SOO

Remarks:

• Since the algorithm does not depend on ℓ, the analysis holds for the best possible choice of the semi-metric ℓ satisfying the assumptions.

• **SOO does almost as well as DOO optimally fitted** (thus “adapts” to the unknown local smoothness of f).
Again for the function $f(x) = (\sin(13x) \sin(27x) + 1)/2$ we have:

<table>
<thead>
<tr>
<th>n</th>
<th>uniform grid</th>
<th>DOO with ℓ_1</th>
<th>DOO with ℓ_2</th>
<th>SOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.25×10^{-2}</td>
<td>2.53×10^{-5}</td>
<td>1.20×10^{-2}</td>
<td>3.56×10^{-4}</td>
</tr>
<tr>
<td>100</td>
<td>8.31×10^{-3}</td>
<td>2.53×10^{-5}</td>
<td>1.67×10^{-7}</td>
<td>5.90×10^{-7}</td>
</tr>
<tr>
<td>150</td>
<td>9.72×10^{-3}</td>
<td>4.93×10^{-6}</td>
<td>4.44×10^{-16}</td>
<td>1.92×10^{-10}</td>
</tr>
</tbody>
</table>
The case $d = 0$ is non-trivial!

Example:

- f is locally α-smooth around its maximum:

 $$f(x^*) - f(x) = \Theta(\|x^* - x\|^{\alpha}),$$

 for some $\alpha > 0$.

- SOO algorithm does not require the knowledge of ℓ.

- Using $\ell(x, y) = \|x - y\|^{\alpha}$ in the analysis, all assumptions are satisfied (with $\gamma = 3^{-\alpha/D}$ and $d = 0$, thus the loss of SOO is $r_n = O(3^{-\sqrt{n}\alpha}/(CD))$ (stretched-exponential loss).

- This is almost as good as DOO optimally fitted!

 (Extends to the case $f(x^*) - f(x) \approx \sum_{i=1}^{D} c_i |x_i^* - x_i|^{\alpha_i}$)
The case \(d = 0 \)

More generally, any function whose upper- and lower envelopes around \(x^* \) have the same shape: \(\exists c > 0 \) and \(\eta > 0 \), such that

\[
\min(\eta, c\ell(x, x^*)) \leq f(x^*) - f(x) \leq \ell(x, x^*), \quad \text{for all } x \in \mathcal{X}.
\]

has a near-optimality \(d = 0 \) (w.r.t. the metric \(\ell \)).
Example of functions for which $d = 0$

\[\ell(x, y) = c\|x - y\|^2 \]
Example of functions with $d = 0$

\[
\ell(x, y) = c\|x - y\|^{1/2}
\]
\[d = 0? \]

\[\ell(x, y) = c\|x - y\|^{1/2} \]
\(d > 0 \)

\[
f(x) = 1 - \sqrt{x} + (-x^2 + \sqrt{x}) \star (\sin(1/x^2) + 1)/2
\]

The lower-envelope is of order 1/2 whereas the upper one is of order 2. We deduce that \(d = 3/2 \) and \(r_n = O(n^{-2/3}) \).
SOO versus DIRECT

- **SOO is much more general than DIRECT**: the function is only locally smooth and the space is semi-metric.
- **Finite-time analysis of SOO**
- **SOO is a rank-based algorithm**: any transformation of the values while preserving their rank will not change anything in the algorithm. Thus extends to the optimization of function given as pair-wise comparisons.
How to handle noise?

The evaluation of f at x_t is perturbed by noise:

$$y_t = f(x_t) + \epsilon_t,$$

with $E[\epsilon_t | x_t] = 0$.

\[f(x_t) \]

\[f^* \]
Stochastic SOO (StoSOO)

Extends SOO to stochastic evaluations:

- Select the cells X_i (at most one per depth) according to SOO based on the UCBs:

$$\hat{\mu}_{i,t} + c\sqrt{\frac{\log n}{T_i(t)}},$$

and get one more value $y_t = f(x_i) + \epsilon_t$ of f at x_i.

- If $T_i(t) \geq k$, then split the cell X_i.

Remark: This really looks like UCT, except that

- several cells are selected at each round,
- a cell is split only after observing k values.
Performance of StoSOO

Theorem 3 (Valko et al., 2013).

For any semi-metric ℓ such that

- f is locally smooth w.r.t. ℓ
- The ℓ-diameters of the cells decrease exponentially fast with their depth,
- The near-optimality dimension of f w.r.t. ℓ is $d = 0$,

by choosing $k = \frac{n}{(\log n)^3}$, $h_{\text{max}}(n) = (\log n)^{3/2}$, the expected loss of StoSOO is

$$\mathbb{E}r_n = O\left(\frac{(\log n)^2}{\sqrt{n}}\right).$$

This is almost as good as HOO [Bubeck et al., 2011] and Zooming [Kleinberg et al., 2008] optimally fitted! Complementary to the adaptive-treed bandits of [Bull, 2013].
Range of application

All illustrations are in Euclidean spaces $[0, 1]^D$ only.

But there are many other semi-metric spaces...

- Trees (games, ...)
- Graphs (social networks, ...),
- Combinatorial spaces (shortest paths problems, ...)
- Other structured spaces (policies in MDPs, ...)

We only require:

- the search space \mathcal{X} to be equipped with a semi-metric ℓ,
- a nested (hierarchical) partitioning of the space,
- f to satisfy a local smoothness property w.r.t. ℓ,
- ℓ may or may not be known.
Conclusions

Provide a measure of the complexity of optimization.

This multi-scale optimistic optimization

- provides an efficient exploration of the search space by exploring the most promising areas first
- provides a natural transition from global to local search
- Performance depends on the “smoothness” of the function around the maximum w.r.t. some metric,
 - and a measure of the quantity of near-optimal solutions,
 - and our knowledge or not of this smoothness.
Thanks !!!

See the review paper

From bandits to Monte-Carlo Tree Search: The optimistic principle applied to optimization and planning.

from my web page:

http://chercheurs.lille.inria.fr/~munos/