Computational Topology
Computational Geometry
Graph Drawing
Topological Graph Theory

Bojan Mohar

SFU (Canada) and IMFM (Slovenia)

July 2013
Kuratowski Theorem:

\[G \text{ planar} \iff \text{contains no } K_5/K_{3,3} \text{-subdivision.} \]

- Two "obvious" obstructions suffice.
- Easy to argue either way.
- Fast algorithms, powerful theory.
Theorem: Every 3-connected planar graph has a convex (straight-line) drawing in \mathbb{R}^2.

\[G \quad \rightarrow \quad G/e \quad \rightarrow \quad \cdots \quad \rightarrow \quad K_4 \]
Circle Packing Theorem (Andreev-Thurston-Koebe)

Every planar graph has a circle packing representation.

- History
- Riemann Mapping Theorem ($\Omega \to \Delta$ conformally equivalent)
Primal-dual Circle Packing

Theorem (Brightwell & Scheinerman): Every planar 3-connected graph admits a primal-dual circle packing. PDCP is unique up to Möbius transformations.

Corollary: G and G^* have straight-line simultaneous drawing with dual edges.

Theorem (Mohar): PDCP can be determined in polynomial time.

- ε-approximation, long arithmetic
- works on arbitrary surfaces (using spherical/Euclidean/hyperbolic geometry)
A remark on using long arithmetic:

Rectilinear crossing number

\[\overline{cr}(G) \leq 2 \]
Universal set for graph drawing

Is there a set of \(n \) points in \(\mathbb{R}^2 \) such that every \(n \)-vertex planar graph admits a straight-line drawing on these \(n \) points used as vertices?

Theorem: For large \(n \), no such "universal" set exists.

Theorem: For every \(n \), there exists a "universal" set with \(O(n^2) \) points.
Straight-line drawings with vertices on $O(n) \times O(n)$ grid are of interest in computer graphics.

While area of GRAPH DRAWING arose from such a simple question.