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E(H) = # of occurrences of H
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» As n —
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» Convergence rate?
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Sample complexity of estimation

v

Distribution p: {p1, p2, ... pk}, previous example: k =2

Observe X" ~ p: estimate p using empirical frequency

v

v

{1 distance

def
IE = pll = Z\E

# of samples required for /1 < .1 with probability > .997

» O(k) samples are sufficient
» Q(k) samples are necessary for any estimator [Paninski '04]

» Most symbols needs to be seen at-least once

n < k?

v

v
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Natural estimators

v

Distribution over {a, b, c,d, e, f}

x> =abbac

v

v

Pa, Pp?: both appeared twice

v

Without prior knowledge, every natural estimator g

da = db

v

If symbols have appeared same # of times

» Assign same probability
» Similarly for unseen symbols
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Definitions
> M, 4l sum of probabilities of symbols appearing p times

> b, def # of symbols appearing u times
» Example: distribution over {a, b, c, d}
» x*=adcd

> qa = = -5 = ?1
> If a symbol x appeared ;2 > 1 times

My

w

ax =

» Unseen mass: M

» Combined-probability estimation: estimate My, My, ... M,
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Optimality criteria

» Goal: estimate My, My,... M,
» [Good Turing "53], [Church Gale '81]
[McAllester Schapire '00], [Drukh Mansour '04]
> Interesting?
» Uniform bounds independent of k
» Optimality criteria?
» /1 distance: classification

n
~ def Iy
M — M|, = Z|Mu - Mu|
pn=0
» KL divergence: universal compression, prediction with log-loss

~def O M,
D(M|[M) =" M, log ="
n=0 MH
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Empirical?
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> My = ps+ p»
» Empirical estimate: E; =2/9+42/9=4/9
» Recall: @, = # of symbols appearing p times

I
Eu= (puz

> # of samples for /1 < 0.1 with probability > 0.99

» Observation: Eg =0
» For a near uniform distribution, unless n > k

My >0

» # of samples > Q(k)

18



[Good Turing "53]

/18



[Good Turing "53]

» Recall: &,,,1 = # of symbols appearing . + 1 times

» Good-Turing estimator

p+1

G,LL =Py

18



[Good Turing "53]

» Recall: &,,,1 = # of symbols appearing . + 1 times

» Good-Turing estimator

p+1

Gu =Py

» Unbiased
E[Gu] = E[Mu]

18



[Good Turing "53]
Recall: &,,,1 = # of symbols appearing 1 + 1 times

v

v

Good-Turing estimator

p+1

Gu =Py

Unbiased

v

E[Gu] = E[Mu]

v

Probability of the unseen mass
> GO = %
» Recall: Eg =0

18



[Good Turing "53]

» Recall: &,,,1 = # of symbols appearing . + 1 times

» Good-Turing estimator

p+1

Gu =Py

Unbiased

v

E[Gu] = E[Mu]

v

Probability of the unseen mass
> GO = %
» Recall: Eg =0

Used in NLP [Church Gale '81]

v



[Good Turing "53]

>

>

Recall: &,,,1 = # of symbols appearing 1 + 1 times

Good-Turing estimator

p+1

G,LL =Py

Unbiased
E[Gu] = E[Mu]

Probability of the unseen mass
> GO = %
» Recall: Eg =0

Used in NLP [Church Gale '81]

Performance guarantee?
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v

w.h.p.: with probability > 1 — poly(1/n)
O: up-to polylogarithmic factors
[McAllester Schapire '00]

» w.h.p., Vu .
|MH_GH|:0( \/E )

v

v
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New results

» Improve Good-Turing/empirical combination bounds?
» No: dp such that w.h.p.

~ 1 ~ 1

» Estimator with better performance?
> Yes: new estimator F such that w.h.p.
M—Fl =02 d D(M||F) =0 (—
IM — Fll, = /A an (M||F) = w2
» Optimal?
> Yes: For any M, dp such that w.h.p.

_ /1 /1
HM—MH1=Q<nl/4> and D(I\/IHM):Q(nm)
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Competitive label-invariant classification

» Unknown discrete distributions: p, g
» Training: X" ~pand Y" ~ g
> Test Z: Z~por Z~q?
3 y3
aab cha a
uuv wvu u
» Output in both cases?
» Same; label-invariant, canonical classifiers
» Optimal classifier?

» w.r.t. label-invariant classifier that knows p, q
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Example

» Previous example: x3=aab, y3 =cba, z=a
> z~x3
» Empirical: assign to the sequence with highest multiplicity

» Proxy for distribution with highest probability
Optimal?
No: p = U[n] and g = U[2n]

> If u(X), p(¥) > 1, then

v

v

p:=1/n and q, =1/2n

» Optimal: assign to distribution with higher probability, z ~ p
» With probability > 0.01, p,(X) < u(¥)
» Empirical: additional error > 0.01

v

For empirical classifier, dp, g such that the error

> 6opi.‘(pa q) +0.01
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Results

> Relate classification to estimation over sequence-pairs

» Good-Turing type estimators for sequence-pairs

v

Classifier such that Vp, g, the error

1
Seopt(pa )+O< 1/5>

v

Independent of k!

v

Lower bound: For any classifier, dp, g such that the error
1
> Eopt(pa ) + Q 1/3

Runs in linear time

v
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> Given: sequence X", estimate E[®,,]
» E[®,]: expected # of symbols appearing x times

v

Good-Turing E[®,] ~ @, high variance
Better estimators for E[®,]
Linear?
> ZH h,®,,
Why should it work?

v

v

v
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Linear estimator

» Naive estimator for E[®,]: @,
» Bias =0, 0 = /E[?,]

error = | /E[D,]

v

|E[®,] — E[@u+1]l, [E[®,] — E[@,1]| <€

» # of symbols appearing 100 and 101 times are close
Assume: @,,_1,9,, P41 are independent
New Estimator

v Yy

(@,ufl + QS,LL + (pu+1) /3

» Bias < 2¢/3
» Variance of sum = sum of variances
| 2 0', = U/\/g
2
error < \f E[®,] + ge
» Improvement
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Technical details

v

b, 1, D, D, q1 are not independent
Needs to show
> |E[@y] — E[Ppu14]], [E[Py] — E[@, ]| < €
» Bounds on bias, variance are enough for concentration

v

v

Simple averaging does not yield optimal estimator

v

Explicit estimator such that bias and variance is optimized

» Tools from linear filters, properties of Poisson functions,
approximation theory
» Adaptively choose the # of non-zero coefficients based on X"
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Summary

» Estimation of M,
> Good-Turing: ©(n~1/6)
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» Optimal
> Linear time complexity
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Summary

» Estimation of M,

Good-Turing: ©(n~1/6)
Proposed estimator: O(n~1/4)
Optimal

Linear time complexity

vV vy vVvyyvy

» Prediction/universal compression
> Per symbol redundancy O(n~1/2)

» Label-invariant classification

> Proposed classifier: additional error O(n~1/%)
» Converse: additional error Q(n=1/3)
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Thank you
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