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Overview

I Combined-probability estimation
I Motivation
I New result: optimal estimator

I Classification
I An unexpected example
I Classification beyond empirical-frequency
I New result: uniformly diminishing additional error

I Proof sketch for estimation
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Example

I Coin bias

I 10 i.i.d. samples: H H T H T T T H T T

Pr(H) =

I Empirical estimate

E (H) =
# of occurrences of H

# samples

I As n→∞
E (H)

a.s.→ Pr(H)

I Convergence rate?
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Sample complexity of estimation

I Distribution p: {p1, p2, . . . pk}, previous example: k = 2

I Observe X n ∼ p: estimate p using empirical frequency

I `1 distance

||E − p||1
def
=

k∑
i=1

|E (i)− pi |

I # of samples required for `1 ≤ .1 with probability ≥ .99?
I O(k) samples are sufficient
I Ω(k) samples are necessary for any estimator [Paninski ’04]

I Most symbols needs to be seen at-least once

I n� k?
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Natural estimators

I Distribution over {a, b, c , d , e, f }
I x5 = a b b a c

I pa, pb?: both appeared twice

I Without prior knowledge, every natural estimator q

qa = qb

I If symbols have appeared same # of times
I Assign same probability
I Similarly for unseen symbols
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Definitions

I Mµ
def
= sum of probabilities of symbols appearing µ times

I Φµ
def
= # of symbols appearing µ times

I Example: distribution over {a, b, c , d}
I x4 = a d c d

M0 = pb M1 = pa + pc M2 = pd
Φ0 = 1 Φ1 = 2 Φ2 = 1

I qa = qc = M1

2 = M1

Φ1

I If a symbol x appeared µ ≥ 1 times

qx =
Mµ

Φµ

I Unseen mass: M0

I Combined-probability estimation: estimate M0,M1, . . .Mn
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Combined-probability estimation
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Optimality criteria

I Goal: estimate M0,M1, . . .Mn

I [Good Turing ’53], [Church Gale ’81]

[McAllester Schapire ’00], [Drukh Mansour ’04]
I Interesting?

I Uniform bounds independent of k

I Optimality criteria?
I `1 distance: classification

||M − M̂||1
def
=

n∑
µ=0

|Mµ − M̂µ|

I KL divergence: universal compression, prediction with log-loss

D(M||M̂)
def
=

n∑
µ=0

Mµ log
Mµ

M̂µ
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Empirical?

I x9 = a b e b c a d c c

I M2 = pa + pb
I Empirical estimate: E2 = 2/9 + 2/9 = 4/9

I Recall: Φµ = # of symbols appearing µ times

Eµ = Φµ
µ

n

I # of samples for `1 ≤ 0.1 with probability ≥ 0.99
I Observation: E0 = 0
I For a near uniform distribution, unless n > k

M0 > 0

I # of samples ≥ Ω(k)
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[Good Turing ’53]

I Recall: Φµ+1 = # of symbols appearing µ+ 1 times

I Good-Turing estimator

Gµ = Φµ+1
µ+ 1

n

I Unbiased
E[Gµ] = E[Mµ]

I Probability of the unseen mass
I G0 = Φ1

n
I Recall: E0 = 0

I Used in NLP [Church Gale ’81]

I Performance guarantee?
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Previous results

I w.h.p.: with probability ≥ 1− poly(1/n)

I Õ: up-to polylogarithmic factors
I [McAllester Schapire ’00]

I w.h.p., ∀µ

|Mµ − Gµ| = Õ
(
µ+ 1√

n

)
I ||M − G ||1 → 0?

I No

I Fix?

I [Drukh Mansour ’05]
I Combined Good-Turing and empirical estimator: Cµ

||M − C ||1 = Õ
(

1

n1/6

)
and D(M||C ) = Õ

(
1

n1/3

)
I Independent of k!
I Optimal?
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(
1

n1/3

)

I Independent of k!
I Optimal?

9 / 18



Previous results

I w.h.p.: with probability ≥ 1− poly(1/n)
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New results

I Improve Good-Turing/empirical combination bounds?

I No: ∃ p such that w.h.p.

||M − C ||1 = Ω̃

(
1

n1/6

)
and D(M||C ) = Ω̃

(
1

n1/3

)
I Estimator with better performance?
I Yes: new estimator F such that w.h.p.

||M − F ||1 = Õ
(

1

n1/4

)
and D(M||F ) = Õ

(
1

n1/2

)
I Optimal?
I Yes: For any M̂, ∃ p such that w.h.p.

||M − M̂||1 = Ω̃

(
1

n1/4

)
and D(M||M̂) = Ω̃

(
1

n1/2

)
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Classification
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Competitive label-invariant classification

I Unknown discrete distributions: p, q

I Training: X n ∼ p and Y n ∼ q

I Test Z : Z ∼ p or Z ∼ q?

x3 y3 z
a a b c b a a
u u v w v u u

I Output in both cases?
I Same; label-invariant, canonical classifiers

I Optimal classifier?
I w.r.t. label-invariant classifier that knows p, q
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Example

I Previous example: x3 = a a b, y3 = c b a, z = a

I z ∼ x3

I Empirical: assign to the sequence with highest multiplicity
I Proxy for distribution with highest probability

I Optimal?
I No: p = U[n] and q = U[2n]

I If µz(x), µz(y) ≥ 1, then

pz = 1/n and qz = 1/2n

I Optimal: assign to distribution with higher probability, z ∼ p
I With probability > 0.01, µz(x) < µz(y)

I Empirical: additional error > 0.01

I For empirical classifier, ∃p, q such that the error

≥ εopt(p, q) + 0.01
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Results

I Relate classification to estimation over sequence-pairs

I Good-Turing type estimators for sequence-pairs

I Classifier such that ∀p, q, the error

≤ εopt(p, q) + Õ
(

1

n1/5

)
I Independent of k!

I Lower bound: For any classifier, ∃p, q such that the error

≥ εopt(p, q) + Ω̃

(
1

n1/3

)

I Runs in linear time
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Proof sketch
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New estimator

I Empirical
Eµ = Φµ

µ

n
I Recall: Φµ = # of symbols appearing µ times

I Multiply by a correction term cµ to improve the estimate

M̂µ = Φµ
µ

n
cµ

I For this talk: bounds on bias, variance =⇒ concentration
I Ignore constants

Estimator cµ Bias Variance

Empirical 1 E[Φµ]
√
µ
n E[Φµ] µ

n2

Good-Turing µ+1
µ

Φµ+1

Φµ
0 E[Φµ] (µ+1)2

n2

New µ+1
µ

E[Φµ+1]
E[Φµ]

0 E[Φµ] µ
n2

I Best of both estimators

I Caveat:
E[Φµ+1]
E[Φµ]
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Estimating
E[Φµ+1]
E[Φµ]

I Given: sequence X n, estimate E[Φµ]
I E[Φµ]: expected # of symbols appearing µ times

I Good-Turing E[Φµ] ∼ Φµ, high variance

I Better estimators for E[Φµ]
I Linear?

I
∑
µ hµΦµ

I Why should it work?
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Linear estimator

I Naive estimator for E[Φµ]: Φµ

I Bias = 0, σ =
√

E[Φµ]

error =
√

E[Φµ]

I |E[Φµ]− E[Φµ+1]|, |E[Φµ]− E[Φµ−1]| ≤ ε
I # of symbols appearing 100 and 101 times are close

I Assume: Φµ−1, Φµ, Φµ+1 are independent
I New Estimator

(Φµ−1 + Φµ + Φµ+1) /3

I Bias ≤ 2ε/3
I Variance of sum = sum of variances
I σ′ = σ/

√
3

error ≤ 1√
3

√
E[Φµ] +

2ε

3
I Improvement
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Technical details

I Φµ−1, Φµ, Φµ+1 are not independent

I Needs to show
I |E[Φµ]− E[Φµ+1]|, |E[Φµ]− E[Φµ−1]| ≤ ε
I Bounds on bias, variance are enough for concentration

I Simple averaging does not yield optimal estimator
I Explicit estimator such that bias and variance is optimized

I Tools from linear filters, properties of Poisson functions,
approximation theory

I Adaptively choose the # of non-zero coefficients based on X n
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Summary

I Estimation of Mµ

I Good-Turing: Θ̃(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear time complexity

I Prediction/universal compression

I Per symbol redundancy Õ(n−1/2)

I Label-invariant classification
I Proposed classifier: additional error Õ(n−1/5)
I Converse: additional error Ω̃(n−1/3)
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I Converse: additional error Ω̃(n−1/3)

18 / 18



Summary

I Estimation of Mµ

I Good-Turing: Θ̃(n−1/6)
I Proposed estimator: Õ(n−1/4)
I Optimal
I Linear time complexity

I Prediction/universal compression

I Per symbol redundancy Õ(n−1/2)
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Thank you
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