Active Learning in Networks

Mark Coates

Frederic Thouin, Michael Rabbat

Sponsored by National Science and Engineering Research Council of Canada (NSERC)
Network Estimation

Performance Monitoring
- Traffic Matrices
- Latencies, Loss Rates, Topology
- Available Bandwidth
- Traffic Classification

Sensor and Actuator Networks
- Target tracking
- Anomaly detection
- Causal effect analysis
Why active learning?

Network monitoring is costly

- Traffic matrices:
 - Installing & maintaining measurement devices
 - Very large volumes of data
- Loss, latency, topology, available bandwidth
 - Bandwidth overhead, time-sensitivity
 - Potential to disturb the system they are measuring

Sensor and Actuator Networks

- Measurement energy (sensor activation and operation)
- Communication overhead
- Node wake-up overhead
- Processing and memory cost
Three Examples

- **Out-of-sequence measurements**
 - Estimate mutual information (Extended Kalman Smoother)
 - Decide whether to process and what type of processing

- **Traffic Flow Classification**
 - Measure flow characteristics: #packets, size, rate, spacing
 - Request application label for limited number of packets

- **Topology Identification**
 - Noisy pairwise similarity metrics between nodes
 - How many do you need to reconstruct topology?
Case Study: Available Bandwidth

- Traditional definition: unused capacity on a network path
Available Bandwidth

Available bandwidth of a link

\[A_i(t, t + \tau) = \frac{1}{\tau} \int_{t}^{t+\tau} C_i(x) - \lambda_i(x) \, dx \]

Available bandwidth of a path

\[A(t, t + \tau) = \min_{i=1,\ldots,H} A_i(t, t + \tau) \]

Tight link determines available bandwidth
Probabilistic Available Bandwidth

- What do we really want to know?
- What can we really measure?

- Largest ingress rate so that egress is nearly the same

\[A_p(\delta, \varepsilon) = \max_{R_{in}} \Pr(R_{out} > R_{in} - \varepsilon) > 1 - \delta \]
Available Bandwidth Techniques

Pathload [Jain and Dovrolis, 2002]
- Sender transmits periodic stream of rate P
- Receiver measures one-way delay $D(k)$
- Calculate one-way delay variations $\Delta(k) = D(k) - D(k-1)$

Transmit:
Receive: (below AB)
Available Bandwidth Techniques

Pathload [Jain and Dovrolis, 2002]
- Sender transmits periodic stream of rate P
- Receiver measures one-way delay $D(k)$
- Calculate one-way delay variations $\Delta(k) = D(k) - D(k-1)$

Transmit: \[\square \square \square \square \square \square \]
Receive: \[\square \square \square \square \square \square \square \] (above AB)
Available Bandwidth Techniques

Pathload [Jain and Dovrolis, 2002]

- Sender transmits periodic stream of rate P
- Receiver measures one-way delay $D(k)$
- Calculate one-way delay variations $\Delta(k) = D(k) - D(k-1)$

- Ideally, (stationary, fluid-model cross-traffic), if $P > B$ then $\Delta(k) > 0$ for all k

- Binary bisection search to determine upper and lower bounds
Delay Measurements

- Green line: $R=45.9$, $PCT=0.43$
- Red line: $R=114.75$, $PCT=0.96$

Graphs showing OWD versus Packet ID (Arrival Time) and PCT versus Probing Rate P (Mbps).
Alternative Metric: Rate Differential

![Graphs showing receiving rate and rate differential vs probing rate](image)
Bandwidth Estimation Algorithm

- **Goal:**
 - Calculate marginal posterior of PAB for each path

- **Initialization**
 - Create factor graph from known topology

- **Bandwidth Estimation**
 - Determine which path to probe
 - Determine probing rate P
 - Update distributions using belief propagation
 - Repeat until stopping criterion is met

- Active Learning
Noisy Active Learning

- Use previous data to guide choice of measurements
Noisy Active Learning

- Use previous data to guide choice of measurements
Noisy Active Learning

- Use previous data to guide choice of measurements
Noisy Active Learning

- Use previous data to guide choice of measurements
Noisy Active Learning

- Use previous data to guide choice of measurements
Noisy Active Learning

- Probe at the median of the posterior distribution
 - Intuitively most informative measurement
Likelihood Model

\[\Pr(Z_{\text{RDT}} = 1) \]

\[r_p - \hat{A}_p \text{ (Mbps)} \]

- \text{data}
- \text{best fit: logsig(}-\alpha \, x\text{)}
Likelihood Model
Updating the distributions

$$z = 0$$

$$z = 1$$

$p(A | z)$

Available Capacity A_y (Mbps)
Noisy Active Learning

- Noiseless case (binary search) [Dasgupta ‘04]
 - Active: $O(\log n)$ samples
 - Passive: $O(n)$ samples

- Bounded noise [Balcan, Beygelzimer, Langford ‘06]
 - Excess risk decays exponentially
 - Rate depends on the noise margin

- Unbounded noise [Castro and Nowak ‘08]
 - Less improvement, but still important gain
 - Passive $O(n^{2/3})$ vs. active $O(n^{-1})$
Network-wide Measurement

- **Multiple paths**
 - High load when measuring multiple paths.
 - Simultaneous measurement can bias results.
 - Sequential rate-scanning is a slow process.

- **Exploit correlations**
 - Paths share tight links
 - Use information from measurements on other paths
Factor Graph

Link variables

Path variables \(y_1 = \min(x_1, x_3, x_4) \)

\[
\begin{align*}
y_1 &= x_1 - x_3 - x_4 \\
y_2 &= x_1 - x_3 - x_5 \\
y_3 &= x_2 - x_3 - x_4 \\
y_4 &= x_2 - x_3 - x_5
\end{align*}
\]
Measurements

- **Binary measurements**
 \[I(R_{in} - R_{out} < \varepsilon) \]

- **Measurement model (likelihood function)**
 \[f(z) = L(z|y_1) \]

RSS Workshop
Updating the distributions

\[f(y_1) \]

\[y \]

\[x_1 \quad x_2 \quad x_3 \]

Probing Rate

\[t \]

RSS Workshop
Updating the distributions

x_1, x_2, x_3

$f(y_1)$

y_1

y

$f(z)$

Probing Rate

t

$t+1$

RSS Workshop
Algorithm

Initialization
- Create factor graph from known topology

Bandwidth Estimation
- Determine which path to probe
- Determine probing rate P
- Update distributions using belief propagation
- Repeat until stopping criterion is met
Choosing the path

Goal: choose most informative path

Possible methods:

- Choose path with largest expected information gain
 - Simulate all outcomes
- Probabilistic choice weighted by
 - Path entropy (WE)
 - Path confidence interval (WCI)
Planetlab Experiments

- 20 paths, 32 links, 25 nodes
- **End nodes:** echo.cs.princeton.edu, planetlabone.ccs.neu.edu, planet2.scs.cs.nyu.edu, pl2.csl.utoronto.ca, pl1.bit.uoit.ca.

- Measurement: 3 trains of 150 packets of 1000 bytes (Median of 3 rates)
- Stopping criterion: 95% Confidence interval < 10 Mbps

- Testing:
 - Train of 2400 packets of 1000 bytes (60 secs video at 320kbps)
 - Test at lower-bound, mean, upper-bound, upper-bound+5
Topology
How Many Packets Per Train?

- Repeat experiment with different length trains
 - Execute until satisfying the same stopping criterion
 (95% confidence in 10Mbps)
Train Length and Accuracy

Results are consistent across wide range of train lengths
Some loss in accuracy when probing above the estimated available bandwidth
Experimental Results
Summary

- Significant number of networking problems where active learning is very attractive
 - Multiple situations where acquiring data has a cost

- Currently we strive to approximate the expected information gain by fast, low-cost calculations
 - Weighted confidence interval
 - Posterior median
 - Mutual information under Gaussian approximation

- More effective techniques?