Versatile Sensor Node (VSN) platform - design of hardware and software

Marko Mihelin
Introduction

- A new WSN node - The Versatile Sensor Node
- Designed and developed in collaboration with ISOTEL d.o.o.
- Multiple purpose design, can be used in many different applications
- Open source software
Concept of the Versatile Sensor Node

- Modular base, which can be quickly adapted to various applications
- Powerful micro-controller with a ARM Cortex-M3 core
- Supports basic digital interfaces such as I²C, SPI, UART, IrDA and analog interfaces ADC and DAC
- Dedicated radio module that supports ISM band frequencies (315 MHz, 433 MHz, 868 MHz, 915 MHz and 2400 MHz), Xbee and Bluetooth modules
- Various options for powering the nod
VSN Modules

- VSN comprises of at least two different modules
- The core module – VSC supports the micro-controller and power supply
- The radio module – VSR houses the low power radio interfaces
- The expansion modules – VSE
- The power module – VSP provides additional power supply options
VSC Module

- Used micro-controller is STM32F103 with 512 kB flash, 64 kB RAM and maximum clock of 72 MHz
- Additional memory 128 kB FRAM, miniSD card
- Supported interfaces USB, RS232, UART, IrDA, SPI, I²C, 12 bit ADC, DAC, instrumental differential amplifier with settable gain
- Selectable system voltage (3,3 V, 3 V, 2,3 V)
- Battery charger and solar battery charger with MPPT (Maximum Power Point Tracker)
VSC Module power states

- The micro-controller has a few standard low power states
- Supported low power modes: Sleep, Stop and Standby
- Additional low power mode: Deep Hibernation
- Power consumption in deep hibernation is below 7 μA
- The node can be woken from deep hibernation using RTC alarm
- System state can be recalled from external high speed non volatile memory
VSC module block schematic

- Expansion connector
- Radio connector
- USB
- RS232
- Sensor interface

5 V – 12 V
- Battery voltage regulator
- VCC voltage regulator
- ST ARM Cortex-M3

1 V – 3 V
- Solar charger
- LiPo battery
- 128 kB non-volatile
- miniSD card

Jožef Stefan Institute
Department of Communication Systems

AgroSense
VSE Module

- Communication expansion module which supports:
 - Serial to Ethernet (Xport, Xport Pro, XportAR, Connect-Me) converters from Lantronix and Digi with PoE power supply
 - Serial to Wi-Fi (Connect-Wi-Me) converter from Digi
 - Telit GM862
 - Xbee or Bluetooth modules
- Development module with a standard 20 pin JTAG connector, and small protoboard
- Full size protoboard for application testing
Communication VSE module block schematic
VSR Module

- Low power radio module
- Supports ISM band frequencies from 315 MHz to 2,4 GHz
- Sub GHz frequencies CC1101 from Texas Instruments
- 2,4 GHz frequency band CC2500 from Texas Instruments
- Optionally a Xbee or Bluetooth module can be attached
VSR Module block schematic

CC1101

Or

CC2500

Xbee/Bluetooth

LIS331

Radio connector
Tools and principles used in VSN design process

- For developing two layer PCBs we used CadSoft Eagle Student edition
- For hardware simulation we used SpiceOpus, a free Spice package
- Most of circuits can be designed with the help of application notes and fine tuned with simulation and trial and error
Software development tools

- Professional
 - Keil, full development system

- Open Source
 - Development environment: Eclipse IDE
 - Tool-chain: Sourcery G++ Lite
 - Cygwin, Linux environment for Windows
 - JTAG server: OpenOCD
 - JTAG hardware interface: Olimex ARM-USB-OCD
Project build system

- Fully customizable build system based on makefiles
- Requires knowledge of how the building system works
- Provides full control of the build process
The ST Standard Peripheral Library

- We use the ST Standard Peripheral Library V3.1.2
- The library deals with register and bit peripheral access so we don't have to
- The library provides macros for various register addresses and states
- All other software including the device drivers are build on top of this library
Driver development general pointers

- The STM32F103 Reference manual is your best friend
- The sensor/device datasheet is your second best friend
- If your best friends fail to provide you with enough information ask Google
- Have patience
Driver development procedure

1) Identify the sensor/device interface
2) Connect the sensor/device to appropriate pins on VSN
3) Initialize the identified clocks and peripherals of the microcontroller
4) Write a test driver to check if all is working correctly
5) Complete the driver, use interrupts and DMA to maximize the performance
Thank you for your attention.

Questions?