Planning and Scheduling for Traffic Control

Scott Sanner

NICTA

ANU
Outline

• Motivation
• History
• Fundamentals
• Simulation
• Control
 – Single Intersection
 – Multiple Intersection
• Future
Motivation
More Motivation
Traffic Impacts Everyone

• Not a problem I have to motivate
 – Economically, impact of better control is in billions of $$ for large cities!

• Real & unsolved problem
 – Multidimensional state (integer / continuous)
 – Multidimensional concurrent actions
 – Stochastic
 – Building a high fidelity model is difficult
Theory vs. Practice

- **Theory**
 - Idealized
 - Models major phenomena
 - Good analytical techniques

- **Practice**
 - Every case is different
 - Control is principled
 - but over-constrained
 - Manually tuned

Need a stronger connection!
Integrating into the Food-chain

• Important to understand what exists theoretically
 – Entire field devoted to transportation research

• And how your research can integrate practically
 – Billions of $$$ in legacy infrastructure
 – Hardware is limited (e.g., 1970’s era)
 • But still more integrated than you think
 – Systems are safety verified
 • Difficult and expensive to replace
 • Figure out where to fit in for lowest cost
Tutorial Objectives

• Main tutorial objective
 – Understand major areas of traffic research
 – Understand basic theory and practice

• At the end of this tutorial you should know….
 – The *fundamental diagram of traffic flow*
 – How to dissipate shockwaves in your arteries
 – The importance of platoons
 – Main differences between SCOOT and SCATS
ICAPS 2010 Tutorial

Traffic Control: History

Scott Sanner

NICTA

THE AUSTRALIAN NATIONAL UNIVERSITY
Minimalist Research Timeline

Transport Research starts to split from Operations Research

Road Research Lab (RRL) Est. in UK (now TRL)

Journal of Transportation Research Part A Begins

6000+ Transport Funded Projects in EU Alone!

1933 1950’s 1966 2010
Signalized Control Timeline

- **Timed Control**: Late 1920’s
- **Analog Control (Denver)**: 1952
- **Digital Control (Toronto)**: 1960
- **Regional Coordination, Metering, VSL, Priority**: Late 1970’s
- **SCATS, SCOOT: Adaptive Control**: 2000+
SCATS

- Sydney Coordinated Adaptive Traffic System

- Stopline detectors

- Coordinated decentralized control

Car Detected!
SCOOT

• Split, Cycle, & Offset Optimization Technique

• Centralized controller

• Some predictive feedforward control
 – Loops after intersection
 • No need to predict turn probabilities
 • Optimize lights before they arrive

Car Detected!
ICAPS 2010 Tutorial

Traffic Control: Fundamentals

Scott Sanner

NICTA

ANU
Flow q: cars/s
Density k: cars/m
Velocity v: m/s

$q = kv$
$v = q/k$
Terminology

- Signal, e.g., 🚪
- Signal Group
- Phase
- Turns
 - Protected Turn
 - Filter Turn
 - unprotected
Terminology Illustration: Azalient Commuter
Each intersection has one or more phase plans
- Time percentage of cycle time is phase split
- Some absolute or variable times
 - Intergreen period
 - Walk signals
 - Turns

Typically four plans per intersection
- Heavy inbound / outbound, balanced, & light

Now just choose a plan and cycle time for one intersection!
ICAPS 2010 Tutorial

Traffic Control: Simulation

Scott Sanner

NICTA

ANU

THE AUSTRALIAN NATIONAL UNIVERSITY
Types of Simulation

• Macrosimulation
 – Model aggregate properties of traffic
 – Average flow, density, velocity of cells

• Microsimulation
 – Model individual cars
 – Typically cellular automata

• Nanosimulation
 – Model people (inside & outside of cars)
Human Factors in Microsimulation

- Microsimulation often involves driver choice:
 - Filter turns
 - Turns into flowing traffic
 - Lane merges
 - Lane changes

- Theories such as gap acceptance theory
 - Attempt to explain driver choices
 - e.g., gap size willing to accept on filter turn $\propto 1$/time

- See Ch. 3 of Traffic-Flow Theory, Henry Lieu
Microsimulation Turn Models

Two ways to model turns:

1. Turn probabilities at each intersection

2. Frequencies in origin-destination (OD) matrix (routes predetermined for each OD pair)

Which is better? Car may go in loops for 1, more realistic to choose 2!
Microsimulation

• Nagle-Schreckenberg
 – Cellular Automata Model
 • nominally each cell is 7.5m in length

 – Simplest model that reproduces realistic traffic behavior

Image and description from: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html
Car Following in Microsimulation

- Nagel-Schreckenberg
- 4 Rules
 - Acceleration:
 \[v_i := \min(v_i + 1, v_{\text{max}}) \]
 - Safety Distance:
 \[v_i := \min(v_i, d) \]
 - Randomization:
 \[\text{prob } p: v_i := v_i - 1 \]
 - Driving:
 \[x_i' = x_i + v_i \]

Image and description from: http://www.thp.uni-koeln.de/~as/Mypage/traffic.html
Car Following Microsimulation

• Continuous traffic flow example:
 – Upper plot is space/time diagram
 – Lower plot is actual traffic

Image and description from: http://www.thp.uni-koeln.de/~as/Mypage/simulation.html
An Even Better Microsimulator

Traffic Jam without Bottleneck

Experimental evidence for the physical mechanism of forming a jam

Yuki Sugiyama, Minoru Fukui, Macoto Kikuchi, Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinari, Shin-ichi Tadaki and Satoshi Yukawa

Movie 1

The Mathematical Society of Traffic Flow

http://news.sciencemag.org/sciencenow/2008/03/28-01.html
Shockwaves

- Low density traffic meets high density traffic...

\[K_d = 0.1 \text{ cars/m}, \quad v_d = 15 \text{ m/s} \]

\[K_u = 0.05 \text{ cars/m}, \quad v_u = 30 \text{ m/s} \]

- Shockwave (density wave)

Shockwave velocity \(u = -5 \text{ m/s} \)
Calculation of Shockwave Speed

• Law of conservation of cars:
 – “Cars can neither be created nor destroyed”

• Traffic flows in/out of shockwave at rate:

\[
q_{\text{enter}} = k_u(v_u - u)
\]
\[
q_{\text{exit}} = k_d(v_d - u)
\]
\[
q_{\text{exit}} = q_{\text{exit}} \Rightarrow u = \frac{k_d v_d - k_u v_u}{k_d - k_u} = \frac{q_d - q_u}{k_d - k_u} = \frac{\Delta q}{\Delta k}
\]
Theory of Shockwaves

Determine shockwave speed u from diagram:
Theory of Shockwaves

Determine shockwave speed u from diagram:

$$u = \frac{q_d - q_u}{k_d - k_u} = \frac{\Delta q}{\Delta k}$$

$u < 0$ causes shockwave to propagate back.
Theory of Shockwaves

Determine shockwave speed u from diagram:

$$u = \frac{q_d - q_u}{k_d - k_u} = \frac{\Delta q}{\Delta k}$$

$u > 0$ dissipates shockwaves!
Macro Simulation

• Cell Transition Model
 – Model **aggregate properties** of traffic
 – Average flow, density, velocity over **segments**

<table>
<thead>
<tr>
<th>100m</th>
<th>100m</th>
<th>100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>K=.02 car/m, V=30 m/s</td>
<td>K=.05 car/m, V=20 m/s</td>
<td>K=.07 car/m, V=10 m/s</td>
</tr>
</tbody>
</table>

– Nonlinear difference equation transition model
– **Recreates shockwave phenomena**

Simulation Software

• **Quadstone Paramics (microsimulation)**
 – Largest market share
 – Industrial strength
 – Expensive

• **Azalient Commuter (micro- and nano-simulation)**
 – Relatively recent startup
 – Intuitive 3D GUI
 – Java API for external control and evaluation
 – More economical for academia
Azalient Commuter
Traffic Control:
Single & Multi-intersection
Optimization Objective

• Can minimize
 – Delays,
 – Stops,
 – Fuel consumption,
 – Emission of pollutants,
 – Accidents

• Here we focus on delays in car-seconds
 (and implicitly stops, fuel, emissions)
Coordinated Control

• Unconstrained policy space (state → action) is large / ∞!

• **One intersection:** multidimensional state and action
 – Changing demand observations & predictions
 – Demand-based protected turns & walk signals
 – Min/max cycle, phase, & intergreen times

• **Coordinated Intersections:** multidimensional action
 – 10x10 grid = 100 intersections
 – Simplest model: 2 decisions per intersection (NS or EW)
 ⇒ 2^{100} decisions
Delay vs. Optimal Cycle Times

- Use maximum best cycle time of any phase

Best cycle time \(\approx \max \text{ of best cycle times per phase} \)
Optimal Cycle Times vs. Flow

• **Light traffic**
 – Short cycle times
 – Minimize delay for individual cars

• **Heavy traffic**
 – Long cycle times
 – Maximize steady-state flow
Single Intersection Control

• Given cycle time, what is best phase split?
 – Webster’s theory…

\[
y_i = \frac{q_i \leftarrow \text{inflow}}{s_i \leftarrow \text{max outflow}}
\]

 – Worst case?

 any \(y_i > 1 \)

 – Solution

 \[
 \text{phase time } i \propto \frac{y_i}{\sum_i y_i}
 \]
Problems with Local Control

• **Upstream or downstream intersections**
 – Downstream queue saturated \(s_i \) decreases
 – In-flow of cars \(q_i \) is **not uniformly distributed**!

• **Platoons**
 – Cars tend to “clump” into platoons
 • Due to discharge from upstream queues
 – Best throughput with good platoon management
 • Careful timing needed

AI papers tend to ignore
Multi-intersection Control

• Optimize phase offsets for platoon throughput:

![Graph showing time vs. space with light phases and delays optimized for platoons.](image)
Master/Slave Offset Control

- Fix timing offsets from critical intersections
 - Allows platoons to pass in dominant flow direction

Married intersections should share cycle times (or 2x)!

Critical intersection

Offset Green = 25s

Offset Green = 40s

Offset Green = 30s
Multi-intersection Control in Practice

• **Split, Cycle, Offset Optimization (SCOOT, SCATS)**
 – Decide on married intersections
 – Decide on intersection offsets
 • Based on dominant flow direction
 – Decide on phase splits
 • w.r.t. offset constraints

• Practical, but highly constrained
 – Room for more fine-grained optimization
ICAPS 2010 Tutorial

Traffic Control: Future

Scott Sanner

NICTA

THE AUSTRALIAN NATIONAL UNIVERSITY
The Future of Traffic Control

- Priority (bus) control
 - Change objective to minimize delay in person-seconds

- Ramp metering & variable speed limits
 - Shockwave / density control

- Real-time selfish routing

- Better sensors
 - Cameras

- Better road topology…
Topology and Traffic I: Braess’s Paradox

- Adding network capacity can reduce flow if
 - Local route choices based on observed flow

http://en.wikipedia.org/wiki/Braess%27s_paradox#How_rare_is_Braess.27s_paradox.3F
Topology and Traffic II

- Turbo Roundabouts

http://en.wikipedia.org/wiki/Roundabout_intersection#Turbo_roundabouts
Topology and Traffic III

• Magic Roundabouts

http://en.wikipedia.org/wiki/Magic_Roundabout_Swindon
Traffic Control: Conclusions

Scott Sanner

NICTA

THE AUSTRALIAN NATIONAL UNIVERSITY
Advice

• Room for improvement in Traffic Control
 – State-of-the-art is principled, but ad-hoc
 – Could use better planning & scheduling

• If your traffic work draws on traditional AI P&S
 – Publish in ICAPS, AAAI, IJCAI, …

• If you really think you’re onto something
 – Go for a journal visible to traffic field…

Transportation Research is a journal-oriented field
Publish in a Journal (bold top-rated)

- **Transportation Research (TR)**
 - TR Part A: Policy and Practice
 - TR Part B: Methodological
 - TR Part C: Emerging Technologies
 - TR Part D: Transport and Environment
 - TR Part E: Logistics and Transportation Review
 - TR Part F: Traffic Psychology and Behaviour

- **Transportation Science**
- **Journal of Transport Economics and Policy**
- **Environment and Planning**
- **Transportation**
Find a Research Collaborator

- Transport Research Laboratory (TRL)
 - Independent consultancy (500+ employees)
- University College London (UCL)
 - Center for Transport Studies
- UC Berkeley
 - Institute of Transportation Studies
- University of Minnesota
 - Center for Transportation Studies
- University of Texas, Austin
 - Center for Transportation Research
- University of Michigan
 - Transportation Research Institute
- National ICT Australia (NICTA)
 - STaR Project

NICTA
Thank you!

Questions?