Evaluation Methodology

Ljupčo Todorovski

Department of Knowledge Technologies
Jožef Stefan Institute
http://www-ai.ijs.si/~ljupco/
Motivation

• evaluating performance of models
 – predictive error (most common)
 – complexity, comprehensibility, ...

• in order to perform tasks such as
 – model selection
 choose the best model
 – model comparison
 test how significant are differences
 – model assessment
 performance on new (future/unseen) data
Talk Outline

• predictive error/accuracy
 – how to estimate it?
 – bias-variance trade-off
 – comparison of models

• different settings/tasks
 – predicting probabilities
 – misclassification costs
 – regression

• other criteria
 – complexity, comprehensibility
Basic Notation

• Y – target variable
 – numeric: regression task
 – discrete: classification task
• X – vector of input variables
• D – data set consisting of (x,y) pairs
• unknown function \(f(X) : Y = f(X) + \varepsilon \)
 – \(\varepsilon \) – intrinsic target noise
• prediction model \(f^*(X) \)
• prediction \(Y^* = f^*(X) \)
1. predictive error (accuracy)
Loss Function

• loss function measures the error btw.
 – Y – measured/observed target value
 – f*(X) – predicted target value

• classification models
 – 0-1 loss: \(L(Y, f^*(X)) = \text{freq}(Y \neq f^*(X)) \)
 – log-likelihood (later)

• regression models
 – squared error: \(L(Y, f^*(X)) = (Y - f^*(X))^2 \)
 – absolute error: \(L(Y, f^*(X)) = |Y - f^*(X)| \)
Predictive Error (Accuracy)

- “true” predictive error
 - expected value of the loss function
 - over the whole population

\[\text{Error}(f^*) = E[L(Y, f^*(X))] \]

- for 0-1 loss function (classification)
 - the error is between 0 and 1
 - \(\text{Accuracy}(f^*) = 1 - \text{Error}(f^*) \)

- How to estimate \(\text{Error}(f^*) \)?
Sample Error

- **Sample predictive error**
 - average loss over a data sample S consisting of N examples (x_i, y_i)

 $$\text{Error}_S(f^*) = \frac{1}{N} \cdot \sum_{(x_i, y_i) \in S} L(y_i, f^*(x_i))$$

- **Training error**
 - error estimated on training data sample

- **Testing error**
 - error estimated on test (unseen) data
Training vs. Test Error (1)

• **common mistake**
 – estimate error on train data only
 – resubstitution error
 – too optimistic (lower error)
 – do not reveal the behavior of the model on new (unseen/future) data

• **correct approach**
 – estimate error on test data
 – unseen in training phase

• **WHY IS THIS SO?**
Training vs. Test Error (2)

Based on Figure 7.1 from the book The Elements of Statistical Learning
2. bias-variance trade-off
Bias-Variance (B-V) Trade-Off

Based on Figure 7.1 from the book The Elements of Statistical Learning
B-V Decomposition (1)

- Error(x)
 \[\text{Error}(x) = E[(y - f^*(x))^2]\]
 \[= E[(y - f(x) + f(x) - f^*(x))^2]\]
 \[= E[\varepsilon^2] + E[(f(x) - f^*(x))^2]\]
 \[= E[\varepsilon^2] + E[(f(x) - Ef^*(x) + Ef^*(x) - f^*(X))^2]\]
 \[= \text{noise} + \text{bias}^2 + \text{variance}\]

- bias^2 = E[(f(x) - Ef^*(x))^2]
- variance = E[(f^*(x) - Ef^*(x))^2]
B-V Decomposition (2)

- intrinsic target noise

- bias term
 - measures how close the average model produced by a particular learning algorithm will be to the target function

- variance term
 - measures how models produced by a learning algorithm vary
B-V: An Example

Based on Figure 7.3 from the book The Elements of Statistical Learning
B-V Decomposition: Methods

- empirical B-V decomposition
 - on an arbitrary data set
 - performed by multiple runs of an algorithm
 - on different data samples

- description of methods (further reading):
 - squared loss function [Geman et al. 1992]
 - 0-1 loss function [Kohavi and Wolpert 1996]
 - unified [Domingos 2000]
3. estimating predictive error
Data Supply Problems

• all data samples
 – should be large (representative) enough
 – training: obtaining better model
 – test: obtaining better error estimate

• however, in real applications
 – amount of data limited
 – due to practical problems

• usual solution: holdout procedure
 – keep some data out of training sample
 – for testing purposes
Holdout Procedures (Typical)

- **model assessment**

<table>
<thead>
<tr>
<th>Train (75%)</th>
<th>Test (25%)</th>
</tr>
</thead>
</table>

- **model selection and assessment**

<table>
<thead>
<tr>
<th>Train (50%)</th>
<th>Validation (25%)</th>
<th>Test (25%)</th>
</tr>
</thead>
</table>
Holdout Estimates: Reliability

• how reliable is the holdout estimate
 – we estimated error rate of 30%
 – (1) on a test sample of 1000 examples
 – (2) on a test sample of 40 examples
 – which is more reliable/confident?

• confidence intervals

• with 95% probability the error lies in
 – (1) interval $[30\%-3\%, 30\%+3\%] = [27\%,33\%]$
 – (2) interval $[30\%-14\%, 30\%+14\%] = [16\%,44\%]$
Confidence Intervals

- different methods for calculating them
 - based on Bernoulli Processes
 - see further reading

- Weka Book
 - Section 5.2
 - Predicting Performance

- ML Book
 - Section 5.2.2
 - Confidence Intervals for Discrete-Valued Hypotheses
How to Improve Reliability?

- repetitive holdout estimates
 - instead of running a single holdout
 - repeat it number of times
 - average the estimates obtained

- how to split into train/test samples?
 - cross validation (CV)
 - leave-one-out (special case of CV)
 - bootstrap sampling
Cross Validation (CV)

- three steps: partition, train, and test

- partition
 - randomly into k folds (F_1, F_2, \ldots, F_k)

- repeat k times (once for each F_i)
 - train on $D \backslash F_i$
 - test (estimate sample error) on F_i

- average error estimates
Partition

F₁ → F₂ → F₃ → D
• Partition

\[D \setminus F_1 = D_1 \]
\[D \setminus F_2 = D_2 \]
\[D \setminus F_3 = D_3 \]

• Train

Diagram showing the process of partitioning and training.
• Partition

• Train

\[D \setminus F_1 = D_1 \]
\[D \setminus F_2 = D_2 \]
\[D \setminus F_3 = D_3 \]

Slide contributed by Nada Lavrač
• Partition

\[D \setminus F_1 = D_1 \]
\[D \setminus F_2 = D_2 \]
\[D \setminus F_3 = D_3 \]

• Train

• Test

Slide contributed by Nada Lavrač
CV: Number of Folds

• large number of folds:
 – training sets very similar to each other
 – high variance of the estimate
 – maximal number of folds N: leave-one-out
 – illustrate high variance on an example

• small number of folds:
 – lower variance, but
 – training set might be too small

• recommended compromise: 5 or 10!
CV: Stratification

• folds sampling not completely random
 – “due to bad luck” we can end-up with non-representative data sample
 – distribution of target variable values vary

• stratified sampling
 – each fold has similar distribution of target variable values

• different stratification methods for
 – classification (similar distributions)
 – regression (similar average values)
Bootstrap Sampling

- three steps: sample, train and test
 - **sample** \(N \) examples from \(D \) with replacement (an example can be used more than once)
 - **train** on the (multi)set of sampled examples \(S \)
 - **test** (estimate sample error) on \(D \setminus S \)

- number of distinct training examples
 - \(0.632 \cdot N \) (see ESL or Weka Book)
 - comparable to 2-fold CV: pessimistic estimate
 - combine estimated test error \((\text{Error}_{D \setminus S}) \) with the training error \((\text{Error}_S) \)

\[
\text{Error}_{0.632} = 0.632 \cdot \text{Error}_{D \setminus S} + 0.368 \cdot \text{Error}_S
\]
Alternatives to Sampling

- **in-sample estimates**
 - \(\text{Error}_{\text{TEST}} = \text{Error}_{\text{TRAIN}} + \text{Optimism} \)
 - problem reduced to estimating “optimism”

- **several in-sample estimates**
 - Akaike information criterion (AIC)
 - Bayesian information criterion (BIC)
 - Minimum description length (MDL)
 - further details in the ESL book
MDL Principle

• the best model is the one that minimizes
 – the model size
 – the amount of information necessary to encode model errors
 – i.e., information necessary to reconstruct training data

• model estimate thus is a sum of
 – model size: \(L(M) \)
 – training data \(D \) w.r.t. \(M \): \(L(D | M) \)

• coding method important
4. comparing predictive errors
Paired t-test

• perform CV for both models \((M_1, M_2)\)
 – on same \(k\) data folds \(F_1, F_2, \ldots, F_k\)
 – obtain estimates \(\text{Error}_{Fi}(M_1)\) and \(\text{Error}_{Fi}(M_2)\)
 – calculate \(\text{Diff}_i = \text{Error}_{Fi}(M_1) - \text{Error}_{Fi}(M_2)\)
 – t-statistic \(t = \text{mean}(\text{Diff}) / \sqrt{\text{var}(\text{Diff})/k}\)

• calculated t-statistic
 – follows Student's distribution
 – with \(k-1\) degrees of freedom
 – see ML or Weka Book for details
Non-Paired t-test

- allows for comparison with models
 - estimated using different CV folds
 - or even different number of CV folds

- Different estimate of $\text{var}(\text{Diff})$ needed
 - see Weka book for details
Comparison: Open Issue

- comparing models on limited data
 - is still an open issue

- ongoing research work focus on
 - criticism of existing methods [Bengio and Grandvalet 2004]
 - comparing existing and proposing new alternatives [Diettrich 1998; Bouckaert 2004]
5. different settings/tasks
Predicting Probabilities (1)

• predicting distribution of Y values
 – instead of predicting Y value itself
 – example: weather forecast (sunny/rainy)
 – prediction: sunny – 75%, rainy – 25%

• 0-1 loss function not good
 – wrong prediction with 55% probability
 – is better than
 – wrong prediction with 75% probability
 – different loss function needed
Predicting Probabilities (2)

- **Notation:**
 - p_j – predicted probability of j-th value of Y
 - p_k – predicted probability of actual Y value
 - a_j – actual probability of j-th value of Y
 - Note that only $a_k = 1$, rest are 0

- **alternative loss-functions**
 - quadratic
 \[L(Y, p^*(X)) = \sum_j (a_j - p_j)^2 = 1 - 2p_k + \sum_j p_j^2 \]
 - log-likelihood
 \[L(Y, p^*(X)) = -2 \sum_j a_j \cdot \log(p_j) = -2 \log(p_k) \]
Errors of Regression Models

- mean squared error (MSE) correspond to
 - squared error loss function
 - \(L(Y, f^*(X)) = (Y - f^*(X))^2 \)

- commonly used \(\text{RMSE} = \sqrt{\text{MSE}} \)

- mean absolute error correspond to
 - absolute error loss function
 - \(L(Y, f^*(X)) = |Y - f^*(X)| \)

- these error measures are scale dependent
Relative and Scale Independent Errors

• relative squared error (RSE)
 – $RSE = \frac{MSE}{\text{var}(Y)}$
 – error relative to the error of the simplest predictor (predicting $\text{mean}(Y)$)
 – RSE value greater than 1 (one) means that the predictor performs worse than simplest
 – comparable across domains

• correlation coefficient (r^2)
 – scale independent
 – see Weka book
Misclassification Costs

• binary classification problem

• two kind of errors
 – false positive
 negative example predicted as positive
 – false negative
 positive example predicted as negative

• different costs assigned to each
 – examples: loan decisions, diagnosis
Confusion Matrix

<table>
<thead>
<tr>
<th>actual class</th>
<th>predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>true positives</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>false negatives</td>
</tr>
<tr>
<td>no</td>
<td>false positives</td>
</tr>
<tr>
<td></td>
<td>true negatives</td>
</tr>
</tbody>
</table>

- Error = \(\frac{FP + FN}{N} \)
- \textbf{Accuracy} = \(\frac{TP + TN}{N} \)
- \textbf{TPrate} = \textbf{Recall} = \(\frac{TP}{TP + FN} \)
- \textbf{FPrate} = \(\frac{FP}{FP + TN} \)
ROC Space

- ROC Heaven
- AlwaysPos
 - Can be made better than random by inverting its predictions
- A random classifier (p=0.5)
- A worse than random classifier...
- AlwaysNeg
- ROC Hell

False positive rate

True positive rate

Slide author: Peter Flach
ROC Plot

Classifiers in ROC space

TP Rate

FP Rate

SVM

C4.5

nB

Ripper

CN2

Slide author: Peter Flach
ROC Convex Hull

- classifiers on the CH achieve best accuracy for some class distributions
- classifiers not on the CH are always suboptimal
Optimal Classifier (1)

- C4.5 optimal for uniform class distribution (slope of the blue line)
- Accuracy: 82%
Optimal Classifier (2)

- SVM optimal for class distribution where we have 4 times as many positives as negatives (slope of the blue line)
- Accuracy: 84%

Slide author: Peter Flach
Incorporating Costs

• for skewed class distribution
 – slope equals neg/pos

• for misclassification costs
 – slope equals \((\text{neg} \times C(+/−))/(\text{pos} \times C(−/+))\)

• further details
 – [Provost and Fawcett 2001]
 – [Flach 2003]
6. other performance measures
Model Complexity

- many different measures
 - model dependent

- decision trees
 - number of nodes, parameters in leaf nodes

- decision rules
 - number of rules, literals, coverage

- in general
 - number of parameters
 - encoding length (MDL like)
Model Comprehensibility

- difficult to assess
 - most methods involve manual work
 - can not be fully automated

- tests
 - can human expert understand the model?
 - can he/she use it for manual prediction?
 - how well?

- roughly related
 - rule interestigness [Fuernkranz and Flach 05]
7. further reading
Further Reading: Books

• Weka Book

• ML Book

• ESL Book
 T.Hastie, R. Tibshirani, and J. Friedman (2001) *The Elements of Statistical Learning*. Springer-Verlag. [Chapter 7].
Further Reading: Articles (1)

Further Reading: Articles (2)

Further Reading: Articles (3)

