Kernel methods for integrating biological data

Dick de Ridder, Marc Hulsman & Bastiaan van den Berg
The Delft Bioinformatics Lab, Delft University of Technology
Biotechnology

Saccharomyces cerevisiae
- alcohol

Aspergillus niger
- citric acid

Penicillium chrysogenum
- penicillin

Lactococcus lactis
- cheese
Industrial protein production

- Micro-organisms can be used as “cell factories”, genetically modified to produce e.g. specific proteins

- For industrial application, proteins should be:
 - (highly) expressed
 - introduce gene in genome
 - place a strong promoter sequence in front of gene
 - secreted
Industrial protein production (2)

- Billion-dollar industry
- Continuous search for new products: from lab to plant

- Test phase is tedious and costly
- Can we predict what proteins can be successfully expressed?
A bioinformatics problem

• Expression is relatively easy, secretion is hard to get right

• Basic machinery is known, but...
 • signal sequences are not unique
 • many alternative routes
 • lack of knowledge on *heterologous* protein expression
A pattern recognition problem

- When all else (model) fails, turn to pattern recognition
A pattern recognition problem (2)

• Learn from experience:
 dataset of 683 proteins for which secretion was attempted

• Required elements for a pattern recognition approach:
 • Objects: proteins
 • Labels: detected secretion at relatively high level (gel)
 • Target: ...
 • Features: ...

Bastiaan van den Berg
TB1, Thu 11.15
What is the target?

- Predictions need to be experimentally tested: *prioritize*

- Criterion: (partial) area under the ROC curve
What is a good representation?

• Available: DNA sequences

ACTGACCTATAAGCG...

M P L I V ...

• Sequence characteristics

 • Composition:
 • length
 • nucleotide/amino acid composition
 • amino acid subset composition (basic, charged, …)

 • Derived:
 • codon adaptation index (DNA)
 • hydrophobicity/philicity (protein)
What is a good representation (2)?

- Protein characteristics (predicted)
 - presence of signal sequence
 - subcellular localization
 - protein function
 - isoelectric point
- Heterologous proteins
 - relation to host organism
- … (whatever works)

- Heterogeneous sources of information (prior knowledge) and data (measurements) need to be integrated
INTEGRATIVE BIOINFORMATICS

KERNEL-BASED ALGORITHMS

KERNELS

KERNEL COMBINATION

EXAMPLE APPLICATIONS
Integrative bioinformatics

- Construct and interpret networks of biochemical interactions in a living cell, making use of all available data and prior knowledge
Molecular interaction networks

Gene A → mRNA A → Protein A
Gene B → mRNA B → Protein B
Gene C → mRNA C → Protein C
Gene D → mRNA D → Protein D
Gene E → miRNA E

Transcription regulation
RNA interference
Metabolic control
Complex formation
Protein interaction
Protein activation
Signaling
Other cells

Enzyme A → Metabolite 1
Enzyme B → Metabolite 2

Complex CD

Protein F
Focus

• Genetic interactions:
 • Transcription regulation etc. (genes cannot interact)
 • Catch-all term used in functional genomics

• Protein-protein interaction:
 • Signalling
 • Transport
 • Complex formation

Tong et al.
Science 2001
Measurements

- **-omics:**
 - sequences
 - transcripts (mRNA)
 - metabolic fluxes
 - protein/metabolite levels
 - protein location
 - protein-protein interaction
 - protein-DNA interaction
 - synthetic sick-or-lethal
 - phenome (conditions)

- Much in (curated) databases

Prior knowledge

- Names, annotations, pathways, reactions, literature…
Pattern recognition for integration

- Predicting interactions is really a classification problem
 - input: measurements/data \(x = (x_1, x_2, \ldots, x_n) \)
 - output: presence of interaction/function \(y \in \{0, 1\} \)

![Diagram showing pattern recognition process](attachment:image.png)
Early integration

- Feature fusion: the standard approach

\[
x_1 \quad x_2 \quad x_3 \quad \cdots \quad x_n \quad \text{Classifier} \quad y
\]

- Usually weighted (nonlinear) combination, optimised w.r.t. target
Late integration

- Classifier combination

- By fixed rule (max, min, …) or by trained combiner
Pitfalls

• Early integration:
 • need to convert all features to single representation, e.g. by binning
 (but: how to do this for sequences, graphs, …?)

• Late integration:
 • choosing combination mechanism
 • integration of different classifiers not straightforward
 • knowledge of data heterogeneity unused
Intermediate integration

- Transform characteristics into a “common language”, an intermediate representation suitable for integration

Pavlidis et al.
J Comp Biol 2002

- Probabilities
- (Dis)similarities
- Kernels
Integrating probabilities

- For example, through Bayesian networks...

Troyanskaya et al. PNAS 2003

Jansen et al. Science 2004
Integrating probabilities

• ...or by combining p-values or test scores

$$F_w = -2 \sum_{i=1}^{n} w_i \ln(p_i)$$

$$H_0 : F_w \sim \chi^2(2)$$

Hwang et al.
PNAS 2005
Integrating (dis)similarities

• For example, by adding distance matrices
Integrating kernels

- For example, by adding kernels – well-founded similarities

- amino acid comp.
- codon adaptation
- signal sequence
- physiochemical

linear kernel
RBF kernel
weighted degree kernel
polynomial kernel

SVM

y
INTEGRATIVE BIOINFORMATICS

KERNEL-BASED ALGORITHMS

KERNELS

KERNEL COMBINATION

EXAMPLE APPLICATIONS
Support vector machines

\[f(z) = w^T z + b \]

\[
\begin{align*}
\min & \|w\|^2 \\
\text{s.t.} & \quad w^T x_i + b \geq +1, \quad y = +1 \\
& \quad w^T x_i + b \leq -1, \quad y = -1
\end{align*}
\]
Support vector machines

- Slack variables: allow misclassifications on training set

\[
f(z) = w^T z + b
\]

\[
\min \|w\|^2 + C \sum_{i=1}^{X} \xi_i
\]

\[
f(z) \geq 1 - \xi_i \quad w^T x_i + b \geq +(1 - \xi_i), \quad y = +1
\]

\[
w^T x_i + b \leq -(1 - \xi_i), \quad y = -1
\]

\[
\xi_i \geq 0, \quad \forall i
\]
Support vector machines (2)

- Rewrite (original) optimisation problem (dual):

\[f(z) = w^T z + b \]

\[= \sum_{i=1}^{|X|} \alpha_i y_i x_i^T z + b \]

\[\max_{\alpha} \sum_{i=1}^{|X|} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{|X|} y_i y_j \alpha_i \alpha_j x_i^T x_j \]

\[0 \leq \alpha_i \leq C, \quad \forall i \]

\[\sum_{i=1}^{X} \alpha_i y_i = 0 \]
Support vector machines (3)

- Map input space into feature space using Φ:

$$f(z) = w^T z + b$$

$$= \sum_{i=1}^{X} \alpha_i y_i \Phi(x_i)^T \Phi(z) + b$$

$$\max_{\alpha} \sum_{i=1}^{X} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{X} y_i y_j \alpha_i \alpha_j \Phi(x_i)^T \Phi(x_j)$$

$$0 \leq \alpha_i \leq C, \quad \forall i$$

$$\sum_{i=1}^{X} \alpha_i y_i = 0$$
Support vector machines (4)

- Replace inner product by kernel (similarity) function:

\[
\begin{align*}
 f(z) &= w^T z + b \\
 &= \sum_{i=1}^{X} \alpha_i y_i K(x_i, z) + b \\
 \max_{\alpha} \sum_{i=1}^{X} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{X} y_i y_j \alpha_i \alpha_j K(x_i, x_j) \\
 0 \leq \alpha_i \leq C, \quad \forall i \\
 \sum_{i=1}^{X} \alpha_i y_i &= 0
\end{align*}
\]
Feature space

- Function Φ maps data into space in which classification may be easier.

$$x = \begin{bmatrix} x_1, x_2 \end{bmatrix}$$

$$\Phi(x) = \begin{bmatrix} x_1^2, x_2^2, \sqrt{2}x_1x_2 \end{bmatrix}$$
Kernels

- Kernels $K(a, b) = \Phi(a)^T \Phi(b)$: using the same algorithm, obtain a nonlinear classifier in original space.

$$K(a, b) = (a^T b + 1)^d$$

$$K(a, b) = \exp \left(-\frac{\|a - b\|^2}{\sigma^2} \right)$$
Kernels (2)

- Not necessary to actually *know* $\Phi(.)$ to construct $K(x,y)$! Any kernel function is valid if it is *positive definite*, i.e. if for any input the resulting kernel matrix K is positive definite ($z^T K z > 0$, $\forall z \in \mathbb{R}^n \neq 0$)

- If K is not positive definite: empirical kernel map (later)

- Other classifiers can be written in terms of inner products and similarly be “kernelised”: kernel nearest mean classifier, kernel k-nearest neighbour, kernel LDA (Fisher), …
Training

- Optimisation of w, b for SVM is a convex problem: can use standard solvers

- Find other parameters by grid search, using cross-validation error estimate
 - Trade-off parameter C (at least for SVC)
 - Kernel parameters: d, σ, \ldots
Support vector regression

- Regressor: \(y = w^T x + b \)

- Loss function: \(\varepsilon \)-insensitive loss,
 \[
 \xi = \begin{cases}
 0 & |\xi| \leq \varepsilon \\
 |\xi| - \varepsilon & \text{otherwise}
 \end{cases}
 \]

- Optimization problem:
 \[
 \min \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} (\xi_i + \xi_i^*)
 \]
 \[
 y_i - w^T x_i - b \leq \varepsilon + \xi_i
 \]
 \[
 w^T x_i + b - y_i \leq \varepsilon + \xi_i^* \quad \forall i
 \]
 \[
 \xi_i, \xi_i^* \geq 0
 \]
Support vector regression (2)

Smola & Schölkopf, 1998

ε = 0.1

ε = 0.2

ε = 0.5
Kernel clustering

- Hierarchical clustering using kernel matrices
- Kernel k-means
- Kernel MDS
 (= kernel PCA)
- ...

Schölkopf et al., 1996
Kernel dimensionality reduction

- Example: principal component analysis, polynomial kernel

- Similarly:
 - kernel LDA
 - kernel CCA
 - ...

Schölkopf et al., 1996
INTEGRATIVE BIOINFORMATICS

KERNEL-BASED ALGORITHMS

KERNELS

KERNEL COMBINATION

EXAMPLE APPLICATIONS
Vector kernels

- Linear
 \[K(a, b) = \langle a, b \rangle^d \]

- Polynomial
 \[K(a, b) = \left(\langle a, b \rangle + 1 \right)^d \]

- Radial basis function
 \[K(a, b) = \exp \left(- \frac{\|a - b\|^2}{\sigma^2} \right) \]
Protein secretion prediction

- Support vector classifier, 10-fold cross-validation error estimate

- Feature subsets
 - Sequence: amino-acid composition
 - Derived: hydrophobic & hydrophilic peaks
 - Other: length, CAI, pI, ...

[Graph showing ROC curves for different feature sets and kernels, including 89.73 All, linear, 90.55 All, RBF, 90.90 Sequence, RBF, 84.74 Derived, RBF, and 85.36 Other, RBF]
Empirical kernel map

• For almost any other data type: empirical kernel map
 • Any distance measure (not necessarily positive definite) can be used to construct a vector with distances to a number of other objects (the “template set”), e.g. BLAST -log(E)-values to all proteins
 • This vector can then be used in a vector kernel:

\[
\begin{align*}
\text{Template set} \\
&x_1 \quad x_2 \quad x_3 \quad x_4 \quad \ldots \quad x_n \\
\begin{bmatrix}
D_{a1} \\
D_{a2} \\
D_{a3} \\
\vdots \\
D_{an}
\end{bmatrix} &= a' \\
\begin{bmatrix}
D_{b1} \\
D_{b2} \\
D_{b3} \\
\vdots \\
D_{bn}
\end{bmatrix} &= b',
\end{align*}
\]

\[
K(a, b) = \langle a', b' \rangle
\]
Kernel kernels

- Kernel addition
 \[K(a, b) = \sum_{i=1}^{k} w_i K_i(a, b), \quad w_i > 0 \quad \forall i \]

- Kernel pointwise multiplication
 \[K(a, b) = \prod_{i=1}^{k} K_i(a, b) \]

- Generalized RBF kernel
 \[K(a, b) = 1 + \exp\left(-\frac{D(a, b)}{2\sigma^2} - \frac{K'(a, a) - 2K'(a, b) + K'(b, b)}{2\sigma^2}\right) \]

- Kernel normalization
 \[K(a, b) = \frac{K'(a, b)}{\sqrt{K'(a, a)K'(b, b)}} \]
Kernel kernels (2)

• Convolution kernel:
 • When subkernels operate on subparts, but it is not clear which subparts
 • Try all possible decompositions into subparts:

\[K_1 \otimes K_2 \otimes \ldots \otimes K_n (a, b) = \sum_{a=a_1a_2\ldots a_n}^{a_n} K_1 (a_1, b_1)K_2 (a_2, b_2)\ldots K_n (a_n, b_n) \]
Local alignment kernel

\[K_{la}(a, b) = \sum_{n=0}^{\infty} K_{la(n)}(a, b) \]

\[K_{la(n)}(a, b) = K_t \otimes \left(K_a \otimes K_g \right)^{(n-1)} \otimes K_a \otimes K_t(a, b) \]

Trivial kernel:
\[K_t(a, b) = 1 \]

Gap kernel
\[K_g(a, b) = \exp(\beta(|a| + |b|)) \]

Letter alignment kernel:
\[K_a(a, b) = \begin{cases} 0 & |a| > 1 \lor |b| > 1 \\ \exp(\beta S(a, b)) & \text{otherwise} \end{cases} \]

with \(S \) the substitution cost, e.g. BLOSUM
Kernel kernels (3)

- **Pairwise kernel:**
 - Kernel between pairs of objects rather than individual ones
 - Alternative to linear vector kernel on pair kernels

![Diagram of pairwise kernel](image)

Protein similarity kernel:
\[
k_s(q_{ij}, q_{km}) = \langle k_{ps}(p_i, p_j), k_{ps}(p_k, p_m) \rangle
\]

Pairwise kernel (similarity between pairs):
\[
k_{pv}(q_{ij}, q_{km}) = k_{ps}(p_i, p_k)k_{ps}(p_j, p_m) + k_{ps}(p_i, p_m)k_{ps}(p_j, p_k)
\]
Set kernels

- Let $\mu(A)$ be a probability distribution over sets A on a domain D (for example $\mu(A) = I_A$, the indicator function)

- Intersection kernel:
 \[
 K \cap (A, B) = \int_D I_A(a)I_B(a)d\mu(a)
 \]

- Union complement kernel:
 \[
 \tilde{K} (A, B) = \int_D I_{D \setminus A}(a)I_{D \setminus B}(a)d\mu(a)
 \]

- Agreement kernel:
 \[
 K (A, B) = \tilde{K} (A, B) + K \cap (A, B)
 \]

- Example: documents represented as sets of words; $\mu(A)$ can be measure of “uniqueness” of word
String kernels

• Spectrum kernel:
 • create a dictionary of all k-mers
 • construct vector with #occurrences of each k-mer
 • use this in a linear kernel

• Similar:
 • versions with gaps, mismatches
 • mixed spectrum kernel, sum over all $k = 1, \ldots, d$
 • motif kernel, look for specific set(s) of k-mers

• Example, $k = 4$: $a = \text{aabbababa}$ $b = \text{abbaabbbab}$

\[
\begin{array}{cccccc}
\text{aabb} & \text{abba} & \text{bbab} & \text{baba} & \text{abab} & \text{baa}\n
a & 1 & 1 & 1 & 2 & 1 & 0 & 0

b & 1 & 2 & 1 & 0 & 0 & 1 & 1
\end{array}
\]

\[K(a, b) = 4\]
String kernels (2)

- Weighted degree kernel: take position into account
 - count number of matching k-mers at identical position, for $k = 1, \ldots, d$
 - discount by length of match, i.e. $w = d - k + 1$

- Example, $d = 4$:

\[
K(a, b) = (4 - 1 + 1) \cdot 5 \\
\quad + (4 - 2 + 1) \cdot 2 \\
\quad + (4 - 3 + 1) \cdot 1 \\
= 20 + 4 + 1 = 25
\]
Protein secretion prediction

- String kernel on protein sequences slightly better than kernels on original feature vectors
Advanced kernels

- **Graph kernels**
 - encode graph as string
 - compare random walks

- **Generative model kernels:**
 - \(K(a, b) = P(a, b \mid M) \) : joint probability of \(a \) and \(b \) given a model \(M \)
 (for example, a hidden Markov model)
 - Fisher kernel

- Etc. etc.
Kernel combination

- Zoo of kernels, applicable for different data sources...

- Combine, for example by simply adding kernel matrices
Integrative Bioinformatics

Kernel-based algorithms

Kernels

Kernel combination

Example applications
Weighted kernel combination

- Combination: weighted sum of (normalised) kernel matrices

\[K'_k(a, b) = \frac{K_k(a, b)}{\sqrt{K_k(a, a)K_k(b, b)}} \]

\[K_{combined}(a, b) = \sum_{k=1}^{n} \mu_k K'_k(a, b) \]

- Goals:
 - Improve performance
 - Determine important features
 - Sparser model

- Simplest approach: \(\mu_k = 1 \ \forall k \)
 - Note: sum of linear kernels is equal to feature space concatenation
Protein secretion prediction

- Kernels normalised and summed: slightly better than best individual kernel
- Can we optimize the weights μ_k?
Weight optimisation

1. Filter approach: optimize a derived criterion

- Example: maximise the kernel alignment w.r.t. μ

$$A(K_{combined}) = \frac{\langle K_{combined}, K_{ideal} \rangle_F}{\sqrt{\langle K_{combined}, K_{combined} \rangle_F \langle K_{ideal}, K_{ideal} \rangle_F}}$$

where $K_{ideal} = y y^T$ is the ideal kernel matrix,
and $\langle K_1, K_2 \rangle_F = \sum_i \sum_j K_{1ij} K_{2ij}$ is the Frobenius norm and

$$K_{combined}(a,b) = \sum_{k=1}^n \mu_k K_k'(a,b)$$

Cristianini et al., NIPS 2001
Weight optimisation (2)

2. Wrapper approach: optimise SVM performance
 - grid search
 - evolutionary algorithms
 - gradient descent, using estimated derivative of the generalisation error, E
 1. set initial guess for μ, use to combine kernels
 2. train SVM on combined kernel
 3. update μ to minimise E, recombine kernels
 4. go to 2

Chapelle et al., Machine Learning 2002
Protein secretion prediction

- Three RBF kernels combined, weights set by grid search:
 - Sequence: $\mu_1 = 1.0$
 - Derived: $\mu_2 = 0.0$
 - Other: $\mu_3 = 0.5$
Protein secretion prediction (2)

- Adding specific kernels does not help here
Weight optimisation (3)

3. Embedded approach: directly optimize SVM margin

- Multiple kernel learning (MKL):

\[
\max \sum_{i=1}^{\left| X \right|} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{\left| X \right|} y_i y_j \alpha_i \alpha_j K(x_i, x_j)
\]

\[
\alpha_i \geq 0, \quad \forall i
\]

\[
\sum_{i=1}^{\left| X \right|} \alpha_i y_i = 0
\]

\[
f(z) \geq 1
\]

\[
f(z) \leq -1 \quad f(z) = 0
\]

Lanckriet et al., ICML 2002
Weight optimisation (3)

3. Embedded approach: directly optimize SVM margin

- Multiple kernel learning (MKL):

\[
\begin{align*}
\min_{\mathbf{\mu}} & \quad \max_{\mathbf{\alpha}} \sum_{i=1}^{\left|X\right|} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{\left|X\right|} y_i y_j \alpha_i \alpha_j \sum_{k=1}^{n} \mu_k K_k \left(x_i, x_j \right) \\
\text{subject to} & \quad \alpha_i \geq 0, \quad \forall i \\
& \quad \sum_{i=1}^{\left|X\right|} \alpha_i y_i = 0 \\
& \quad \mu_k \geq 0, \quad \forall k \\
& \quad \sum_{k=1}^{n} \mu_k \text{tr} \left(K_k \right) = c
\end{align*}
\]

\[f \left(\mathbf{z} \right) \geq 1\]

\[f \left(\mathbf{z} \right) \leq -1\]

\[f \left(\mathbf{z} \right) = 0\]

Lanckriet et al., ICML 2002
Multiple kernel learning

• Original L_2-SVM primal:

 $\min \|w\|^2_2 + C \sum_{i=1}^{|X|} \xi_i$

 $w^T x_i + b \geq + (1 - \xi_i), \quad y = +1$

 $w^T x_i + b \leq -(1 - \xi_i), \quad y = -1$

 $\xi_i \geq 0, \quad \forall i$

• Corresponding MKL primal:

 $\min \left(\sum_{k=1}^n \|w_k\|_2 \right)^2 + C \sum_{i=1}^{|X|} \xi_i$

• L_1-norm over per-kernel L_2 norm
• Promotes sparsity at kernel level, similar to group-LASSO regression; kernels with non-zero weight are “support kernels”

Bach et al., ICML 2004
Multiple kernel learning (2)

- Example: protein localisation prediction, with 69 kernels in six groups
Multiple kernel learning (3)

• Sparsity does not always bring better performance
 • Move from L_1 norm to L_p norm

• Other extensions:
 • Localized multiple kernel learning (Gönen et al., ICML 2008)
 • Nonlinear kernel combinations (Cortes et al., NIPS 2009)
 • More complex sparsity structures (Szafranski et al., M. Learning 2010)
INTEGRATIVE BIOINFORMATICS
KERNEL-BASED ALGORITHMS
KERNELS
KERNEL COMBINATION
EXAMPLE APPLICATIONS
A. Protein-protein interaction

- **Input x**: homology, co-expression, co-localization, etc. (49)
- **Output y**: protein interaction (0/1)

- **EA** = evolutionary algorithm

Hulsman et al., *IEEE TCBB* 2009
A. Protein-protein interaction (2)
A. Protein-protein interaction (3)

- Alignment and MKL give sparse solutions
 (columns are runs)
B. PPI from literature

• Input x: sentence with two identified proteins, e.g.
 "Raf-1 was activated by JAK2 in the presence of p21ras"

• Output y: protein interaction (0/1)

• Two parsers result in trees:

Miwa et al., Int J Med Inf 2009
B. PPI from literature (2)

- Three kernels applied to each parse:
 - Bag-of-words (set kernel)
 - Subset tree kernel (#common subtrees)
 - Graph kernel (random walks)

<table>
<thead>
<tr>
<th>L</th>
<th>F</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>30.2</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>52.7</td>
<td>0.822</td>
</tr>
<tr>
<td>T</td>
<td>55.1</td>
<td>0.799</td>
</tr>
<tr>
<td>G</td>
<td>59.1</td>
<td>0.854</td>
</tr>
<tr>
<td>T + B</td>
<td>58.5</td>
<td>0.849</td>
</tr>
<tr>
<td>G + B</td>
<td>57.0</td>
<td>0.847</td>
</tr>
<tr>
<td>T + G</td>
<td>62.0</td>
<td>0.873</td>
</tr>
<tr>
<td>T + G + B</td>
<td>59.9</td>
<td>0.863</td>
</tr>
</tbody>
</table>
C. Enzyme function prediction

- **Input** x: sequence representation of enzyme E
- **Output** y: representation of metabolic reaction R

(structured output prediction: density over R's)

$$K(R^a, R^b) = K(S^a, S^b)K(P^a, P^b)$$
$$K(S^a, S^b) = \sum_{i,j} K_{molecule}(S^a_i, S^b_j)$$

$K_{molecule}$ counts number of common small subgraphs

Diagrams:

- S_1: D-glucose
- S_2: ATP
- P_1: D-glucose 6-phosphate
- P_2: ADP

Astikainen et al., ICB 2010

D-glucose + ATP \rightarrow D-glucose 6-phosphate + ADP

Juho Rousu, TA2, Thu 10.15
CONCLUSIONS
Conclusions

• Integrative bioinformatics:
 • combining prior knowledge & measurements to infer and annotate molecular interaction networks
 • heterogeneous data calls for intermediate integration

• Kernels are ideal vehicles for this
 • many standard algorithms have been “kernelised”
 • a wide variety of applicable kernels is available
 • theory of kernel algorithms and combination is well-developed, and still ongoing research

• Try it yourself!

 Good start: http://www.shogun-toolbox.org/
But...

- Kernel combination is still no free lunch:
 - kernel normalisation is essential
 - kernel combinations can overtrain as well
 - kernel and classifier parameters (C, σ) have large impact, but require intensive procedures to set
 - computationally intensive, particularly for genome-wide datasets

- In practice:
 - measurement coverage & bias are problematic
 - choosing the right kernel(s) to combine is still an art
 - as often in bioinformatics, the KISS principle applies: simple summation often already works quite well
Thank you!

http://bioinformatics.tudelft.nl/