Learning and retrieval from multiple sources

Samuel Kaski
Learning from multiple sources
Learning from multiple sources

Auxiliary data about genes

Auxiliary data about measurements

Auxiliary data about measurements

Array i

Gene g

functional class
prot–prot interaction
genetic sequence
chromosome location
transcription factors

etc

i

Current meas.

Future meas.

Aux data
1. Focus on modeling relevant things:

Unsupervised multi-view learning
Auxiliary data about genes

Gene g

- functional class
- prot-protein interaction
- genetic sequence
- chromosome location
- transcription factors
- etc.

Auxiliary data about measurements

Array i

Previous measurements

Current meas.

Future meas.

Aux data
Relevance from co-occurring data: in search for cancer-related genes

Methods:
- DeCA
- clustering

Cancer-specific effects by data fusion

DNA copy number changes

Databases

Gene expression
Decompose multiple “views” into view-specific and shared components

- Motivation #1: Shared or dependent components are relevant for both sources
- Motivation #2: Unknown type of noise (=source-specific signal) can be discarded
- Small samples => From dependency maximization to generative models
Local Dependent Components

- Assume dependencies are linear only locally
- DP-mixture of Bayesian canonical correlation analyzers
- Marginalize out the specific latent sources

Klami and Kaski, ICML 2007
Preprocessing that preserves what is shared/dependent

Under simplifying assumptions, the shared signal can be extracted by combining standard CCA components (fast!)

Tripathi et al, BMC Bioinformatics, 2008
Baseline: Simple column wise concatenation of all data matrices

PCA: PCA of column wise concatenation of all data matrices
Problems with two-view learning

Strength of CCA-type approaches is *invariance* to transformations: CCA computes correlations in an optimized subspace.

This turns into a weakness for small data sets: it is too flexible.

=> use prior knowledge to restrict the subspace
Standard probabilistic CCA

\[W_x \rightarrow Z \rightarrow W_y \]

\[X \rightarrow W_x \rightarrow Z \rightarrow W_y \rightarrow Y \]

Paired samples

Features
Dependency detection with similarity constraints

Similarity-constrained CCA:

Setting suitable priors for T gives constraints

Lahti et al, MLSP2009
Dependencies between expression and structural variation

Lahti et al, MLSP2009
Cancer study

Lahti et al, MLSP2009
Probabilistic Tools for Dependency Modelling
ICML/MLOSS 2010

Leo Lahti1,2 Olli-Pekka Huovilainen1 Tommi Suviataival1
Ilkka Huopaniemi1 Abhishek Tripathi3 Samuel Kaski1

1Department of Information and Computer Science, Helsinki Institute for Information Technology HIIT and Adaptive Informatics Research Centre, Aalto University School of Science and Technology, Finland

2Haartman Institute and HUSLAB, Dpt of Pathology, University of Helsinki and Helsinki University Central Hospital, Finland

3Department of Computer Science, University of Helsinki, Finland
Development versions

DNA copy number / gene expression / micro-RNA / methylation

bioconductor.org/packages/devel/bioc/html/pint.html
dmt.r-forge.r-project.org

(Leo Lahti, ICML/MLOSS’10)
Dependency exploration through **associative clustering**: Search for **regularities** and **exceptions** in gene function between mouse and man.
Non-parametric dependencies between clusters

Triply infinite two-domain mixture model

Clusters x and y separately, and finds components that describe their dependencies

Rogers et al, Machine Learning 2010
Summary on multi-view learning

• Decomposition into shared and view-specific components
• Usable as a general-purpose preprocessing step
• Can be extended in several ways
 • Nonparametric methods
 • Associative clustering
 • Regularize
• Application to cancer studies
2. Get more data.
REx: Search for Relevant Experiments
Auxiliary data about genes

Gene g

Functional class
Prot-prot interaction
Genetic sequence
Chromosome location
Transcription factors

Array i

Previous measurements

i

Current meas.

Future meas.

Auxiliary data about measurements

Aux data
Querying collections

Annotation-driven query: “leukemia”

Data-driven query: (leukemia)

Caldas et al, Bioinformatics, 2009
What is interesting/relevant?

(i) Differential expression (Bring in covariates: treatment vs control). Why?
- The experimenter designed the controls to separate interesting variation
- The differences are more comparable across labs/situations

(ii) Bring in a model of biology
Modeling of an experiment collection

Task: Learn a decomposition of experiments into biological processes, given a database of experiments.

Solution in REX1.0:
• Assume experiments are bags of gene set activations (sets = biological constraints)
• Probabilistic overlapping components by topic models (data-driven modeling given the constraints)

Caldas et al, Bioinformatics, 2009
"Topic Model" / Latent variable model

- Extensively used in bag-of-words text data.
- Called Latent Dirichlet Allocation (LDA) or discrete PCA (dPCA)

Caldas et al, Bioinformatics, 2009
LDA and GSEA

Estimate \(\Theta \) and \(\Phi \) with collapsed Gibbs sampler.

Caldas et al, Bioinformatics, 2009
Components of experiments

Caldas et al, Bioinformatics, 2009
Components of experiments

Caldas et al, Bioinformatics, 2009
Retrieval of relevant experiments

Task: Find experiments in which the same biological processes are active.

≈ find experiments where the same components are active

Convenient given the probabilistic model.
Rank the experiments by

\[p(\text{query/experiment}) \]

Caldas et al, Bioinformatics, 2009
Visualization of results: nonlinear projection

Caldas et al, Bioinformatics, 2009
Nonlinear projection

Task: Position each experiment on the plane such that relevant experiments are close to queries.

Solution:
Use \(p(query/experiment) \) to define relevance
Ask the relative cost of misses and false positives from the user
Minimize total cost by NeRV

Caldas et al, Bioinformatics, 2009
Neighbor retrieval visualizer NeRV

Optimizes a user-defined tradeoff between precision and recall.

\[E_{\text{NeRV}} = \lambda E_i[D(p_i, q_i)] + (1 - \lambda) E_i[D(q_i, p_i)] \]

Venna and Kaski, AISTATS 2007, Venna et al, JMLR 2010
Does really work

http://www.cis.hut.fi/projects/mi/software/dredviz/

Venna and Kaski, AISTATS 2007; Venna et al, JMLR 2010
Querying the Model/Database

Query with “malignant melanoma” vs “normal” comparison.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Comparison (... vs “normal”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bladder Carcinoma</td>
</tr>
<tr>
<td>2</td>
<td>Vulvar Intraepithelial Neoplasia</td>
</tr>
<tr>
<td>3</td>
<td>Hyperparathyroidism</td>
</tr>
<tr>
<td>4</td>
<td>Lung (smoker)</td>
</tr>
<tr>
<td>5</td>
<td>Bladder Carcinoma</td>
</tr>
<tr>
<td>6</td>
<td>Bladder Carcinoma</td>
</tr>
<tr>
<td>7</td>
<td>Infiltrating Ductal Carcinoma</td>
</tr>
<tr>
<td>8</td>
<td>Prostate Cancer</td>
</tr>
<tr>
<td>9</td>
<td>Breast Carcinoma</td>
</tr>
<tr>
<td>10</td>
<td>Esophageal Adenocarcinoma</td>
</tr>
</tbody>
</table>
Retrieval results

- 105 normal vs. disease comparisons: ‘cancer’ (27) or ‘not cancer’ (78)
- Query with cancer comparisons
- Compare to random baseline
Summary of REx: Retrieval of relevant Experiments

• Modeling of an experiment: Differential expression of biological processes (~gene sets)
• “Topic model” of bags of differentially expressed gene sets
• Probabilistic retrieval of relevant experiments, given the model
• Model-based visualization of results
Contributors from my group (current and former):

Collaborators in these works (non-comprehensive list):
Laboratory of Cytomolecular Genetics, Univ. Helsinki: S. Knuutila, S. Myllykangas
VTT: M. Orešič
Univ of Turku: E. Savontaus
EBI, EMBL: A. Brazma, N. Gehlenborg
Medicel Oy: C. Roos + several companies
Univ. Glasgow: M. Girolami, S. Rogers

More information at:
http://www.cis.hut.fi/projects/mi