Parameter estimation for gene regulatory networks defined by differential equations

Nadia Lalam, Chalmers University of Technology
Joint work with Chris Klaassen, University of Amsterdam and EURANDOM
Outline

- Gene regulatory network
- Mathematical formalisms
- Statistical model
- Maximum likelihood based inference
Gene Regulatory Network

- Collection of genes in a cell which interact with each other and with other substances in the cell

- Regulation of gene expressions governs intracellular and extracellular mechanisms

- Aim: Determine the interactions within a gene regulatory network
Many formalisms have been developed for qualitative or quantitative description of gene regulatory networks. They may be:

- Discrete
- Continuous
- Stochastic
- Deterministic
Mathematical formalisms

- Boolean Networks: Qualitative discrete models
 - State of a gene is either on or off
 - Connections between genes defining the activation/repression of a gene product on another
 - Change of state defined by an activation function
 Example: \(f_\ell(x) = 1(\sum_{k=1}^{N} W_{\ell,k} x_k - h_\ell > 0) \),
 \(x = (x_1, \ldots, x_N) \in \{0, 1\}^N \)
 - Synchronous or asynchronous
Mathematical formalisms

- Bayesian Networks: Probabilistic models
 - Vertices ↔ Random variables describing the gene expression levels
 - Conditional distributions of the vertices given their direct parents
 - Edges ↔ Dependencies
 - Static or dynamic
Mathematical formalisms

Stochastic Equations:

- \(P(X, t) \) proba. that \(X = (X_1, \ldots, X_N) \) molecules are inside the cell at time \(t \), \(r \) reactions

\[
P(X, t + \delta t) = P(X, t)(1 - \sum_{\ell=1}^{r} \alpha_{\ell}\delta t) + \sum_{\ell=1}^{r} \beta_{\ell}\delta t
\]

- \(\alpha_{\ell}\delta t \) proba. that \(\ell \) occurs during \([t, t + \delta t]\) given that \(X \) molecules at time \(t \), and \(\beta_{\ell}\delta t \) proba. that the system is one \(\ell \) reaction removed from the state \(X \) at time \(t \) and then undergoes \(\ell \) in \([t, t + \delta t]\)

- \(\delta t \to 0 \) entails the Stochastic Master Equation

\[
\frac{\partial P(X, t)}{\partial t} = \sum_{\ell=1}^{r} (\beta_{\ell} - \alpha_{\ell} P(X, t))
\]
ODE’s formalism

- State variables ↔ Gene product concentrations

- The gene product concentrations $g_{k\ell}(t; \theta)$ are assumed to satisfy a set of Ordinary Differential Equations

$$\frac{d g_{k\ell}(t; \theta)}{d t} = \psi_{k\ell}(g(t; \theta), \theta)$$

- k the cell index, $1 \leq k \leq K$
- ℓ the gene product (protein or mRNA) index, $1 \leq \ell \leq N$
- $g(t; \theta) = [g_{k\ell}(t; \theta)]_{k,\ell}$
- $g(t_0; \theta)$ initial condition
- θ the unknown biological parameter of interest
Example: Reaction-diffusion model

- Linear array of cells, \(N \) interacting genes

- Let \(\mathbf{W} = [W_{\ell\ell'}]_{\ell, \ell'} \) be the regulatory weight matrix s.t.
 \(W_{\ell\ell'} > 0 \) if gene \(\ell' \) activates the synthesis of \(\ell \)
 \(W_{\ell\ell'} < 0 \) if gene \(\ell' \) represses \(\ell \)
 \(W_{\ell\ell'} = 0 \) if \(\ell' \) and \(\ell \) do not interact

- Let \(D_\ell \) be the diffusion parameter of gene product \(\ell \)

- Let \(\phi_\ell(x) = x^2/(x^2 + h_\ell) \) (Hill function)

\[
\frac{d g_{k\ell}(t; \theta)}{dt} = \phi_\ell \left(\sum_{\ell' = 1}^{N} W_{\ell\ell'} g_{k\ell'}(t; \theta) \right) + D_\ell [g_{k-1\ell}(t; \theta) - 2g_{k\ell}(t; \theta) + g_{k+1\ell}(t; \theta)]
\]

- Biological parameter: \(\theta = (\mathbf{W}, \mathbf{D}, \mathbf{h}) \)
ODE’s formalism

- k cell index, ℓ gene product index, initial conditions $g(t_0; \theta)$ and

$$\frac{dg_{k\ell}(t; \theta)}{dt} = \psi_{k\ell}(g(t; \theta), \theta)$$

- Aim: Infer θ based on observations of the solutions of the ODE’s at different times for different combinations of gene products
Proteomic data

- Scans of stained fixed organisms obtained by confocal laser scanning microscopy

- At maximum three stained gene products at a time whereas the gene regulatory network may contain more than three genes
 ⇒ 2D picture

- Stained intensity proportional to the protein concentration
 ⇒ Numerical data
Proteomic data

Image from confocal laser scanning microscopy...

... converted into numerical values

<table>
<thead>
<tr>
<th>cell</th>
<th>caudal</th>
<th>hunchback</th>
<th>Kruppel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4113</td>
<td>33.57</td>
<td>91.41</td>
<td>9.28</td>
</tr>
<tr>
<td>4114</td>
<td>37.22</td>
<td>88.49</td>
<td>11.02</td>
</tr>
<tr>
<td>4115</td>
<td>44.17</td>
<td>83.57</td>
<td>12.91</td>
</tr>
<tr>
<td>4116</td>
<td>52.42</td>
<td>77.98</td>
<td>15.07</td>
</tr>
<tr>
<td>4117</td>
<td>59.76</td>
<td>71.47</td>
<td>17.71</td>
</tr>
</tbody>
</table>

...

Source: http://flyex.ams.sunysb.edu/flyex/

Poustelnikova et al., 2004
Statistical model

- Data obtained by confocal laser scanning microscopy divided into d samples: Each sample contains organisms stained for the same three gene products at the same intended time.

- For an observation j from sample i, the random variable X_{ij} represents its scan converted into numerical values.

- Aim: Infer θ, where $g_{k\ell}(t; \theta)$ are the solutions of the ODE’s.
Statistical model

For a sample i formed by n_i observations, let L_i be the subset of three stained proteins among the N interacting genes, t_i the intended observation time

X_{ij} is a table $\{X_{ij k \ell}\}_{k, \ell}$, where k indexes the cells and $\ell \in L_i$ indexes the gene products, such that

$$X_{ij k \ell} = g_{k \ell}(t_i + \delta_{ij}; \theta) + \epsilon_{ij k \ell}$$

$1 \leq i \leq d, 1 \leq j \leq n_i$

Account for stochasticity in the time of observation (random error δ_{ij}) and for stochasticity in the measurement of gene product (random error $\epsilon_{ij k \ell}$)
Statistical model

- Taylor approximation

\[g_{k \ell}(t_i + \delta_{i j}; \theta) \approx g_{k \ell}(t_i; \theta) + \left. \frac{\partial g_{k \ell}(t; \theta)}{\partial t} \right|_{t=t_i} \delta_{i j} \]

with \(\frac{\partial g_{k \ell}(t_i; \theta)}{\partial t} = \psi_{k \ell}(g(t_i; \theta), \theta) = \psi_{k \ell}(t_i; \theta) \) the RHS of the ODE at time \(t = t_i \)

- Then

\[X_{i j k \ell} = g_{k \ell}(t_i; \theta) + \psi_{k \ell}(t_i; \theta) \delta_{i j} + \varepsilon_{i j k \ell} \]

- Assume all \(\varepsilon_{i j k \ell} \) i.i.d. with density \(f(\cdot) \), mean 0 and variance \(\sigma_{\varepsilon}^2 \), all \(\delta_{i j} \) i.i.d. with density \(g(\cdot) \), mean 0 and variance \(\sigma_{\delta}^2 \), and \(\varepsilon_{i j k \ell} \) independent of \(\delta_{i j} \)
Maximum Likelihood Estimation

- Assume \(f(\cdot) \) and \(g(\cdot) \) Gaussian densities

- Parameter \(\gamma = (\theta, \sigma_\varepsilon^2, \sigma_\delta^2) \) estimated by MLE:
 Maximization in \(\gamma \) of the likelihood

\[
\prod_{i=1}^d \prod_{j=1}^{n_i} \int_{\mathbb{R}} \prod_{k=1}^K \prod_{\ell \in L_i} \frac{1}{\sigma_\varepsilon} \phi \left(\frac{X_{ijk\ell} - g_{k\ell}(t_i; \theta) - \psi_{k\ell}(t_i; \theta) \sigma_\delta y}{\sigma_\varepsilon} \right) \phi(y) dy
\]

with \(\phi(y) = 1/\sqrt{2\pi} \exp \left\{ -0.5y^2 \right\} \)
Maximum Likelihood Estimation

The log-likelihood normalized by $-2/n$, with $n = \sum_{i=1}^{d} n_i$ the number of observations, is

$$M_n(\gamma) = \frac{1}{n} \sum_{i,j} \{ K | L_i | \log \sigma^2_{\epsilon} + \log (1 + \frac{\sigma^2_{\delta}}{\sigma^2_{\epsilon}} \sum_{k, \ell} \psi^2_{k \ell}(t_i; \theta))$$

$$+ \frac{1}{\sigma^2_{\epsilon}} \sum_{k, \ell} (X_{i,j,k,\ell} - g_{k\ell}(t_i; \theta))^2$$

$$- \frac{\sigma^2_{\delta} [\sum_{k, \ell} (X_{i,j,k,\ell} - g_{k\ell}(t_i; \theta)) \psi_{k \ell}(t_i; \theta)]^2}{\sigma^2_{\epsilon} (\sigma^2_{\epsilon} + \sigma^2_{\delta} \sum_{k, \ell} \psi^2_{k \ell}(t_i; \theta))} \}$$

with $\gamma = (\theta, \sigma^2_{\epsilon}, \sigma^2_{\delta})$
Maximum Likelihood Estimation

- Particular simple case: No time error ($\sigma_\delta = 0$). Then the MLE in the Gaussian case is the Least Squares Estimator.

- Asymptotics: $n \to \infty$ s.t. $\lim_{n \to \infty} n_i/n = p_i > 0$

- The SLLN yields $\lim_{n \to \infty} M_n(\gamma) \overset{a.s.}{=} M(\gamma)$

- Let $\Gamma_0 = \{ \gamma_* \in \Gamma : \gamma_* = \arg\min_{\gamma \in \Gamma} M(\gamma) \}$ be the set of minimizers of the asymptotic criterion $M(\cdot)$
 $\Rightarrow \Gamma_0$ contains the true parameter value γ_0
Asymptotic properties

\[\Gamma_0 = \{ \gamma_* \in \Gamma : \gamma_* = \text{argmin}_{\gamma \in \Gamma} M(\gamma) \}, \text{ and } n \to \infty \text{ s.t. } \lim_{n \to \infty} n_i/n = p_i > 0 \]

Under smoothness conditions of the RHS of the ODE’s, the MLE \(\hat{\gamma}_n \) is consistent in the sense that, for all \(\varepsilon > 0 \), \(\lim_{n \to \infty} P(\inf_{\gamma_* \in \Gamma_0} d(\hat{\gamma}_n, \gamma_*) \geq \varepsilon) = 0 \)

If \(\Gamma_0 = \{ \gamma_0 \} \), then \(\hat{\gamma}_n \) is weakly consistent, i.e. for all \(\varepsilon > 0 \), \(\lim_{n \to \infty} P(d(\hat{\gamma}_n, \gamma_0) \geq \varepsilon) = 0 \)

Lalam and Klaassen, 2006
Asymptotic properties

\[\Gamma_0 = \{ \gamma_\bullet \in \Gamma : \gamma_\bullet = \arg\min_{\gamma \in \Gamma} M(\gamma) \}, \text{ and } n \to \infty \text{ s.t.} \]
\[\lim_{n \to \infty} n_i/n = p_i > 0 \]

If \(\hat{\gamma}_n \) is weakly consistent, and under regularity assumptions of the RHS of the ODE’s and of the expectation of \(M_n(\gamma) \), then \(\hat{\gamma}_n \) is root-\(n \) consistent, that is \(\lim_{M \to \infty} \limsup_{n \to \infty} P(\sqrt{n}d(\hat{\gamma}_n, \gamma_0) > M) = 0 \)

Lalam and Klaassen, 2006
Drosophila case

- Work in progress: Application to the MLE approach to experimental data

- Gene regulatory network responsible of a particular early stage of Drosophila embryo development: Segmentation
Drosophila case

- $N = 6$ genes in the network responsible of the early embryo segmentation

- $n = 954$ observations between cleavage cycle 13 (after egg fertilization) and cleavage cycle 14

- Observations: Protein concentrations

- 9 time classes

- $K = 58$ cells along the embryo antero-posterior axis

Mjolsness et al., 1991, Jaeger et al., 2004

Drosophila case

- Initial conditions at the onset of cleavage cycle 13 and

\[
\psi_{k\ell}(g(t; \theta), \theta) = R_{\ell} \Phi \left(\sum_{\ell' = 1}^{N_g} W_{\ell\ell'} g_{k\ell'}(t) + m_\ell g_{k\ell} bcd(t) + h_\ell \right) \\
+ D_\ell \left[g_{k-1\ell}(t) - 2g_{k\ell}(t) + g_{k+1\ell}(t) \right] \\
- \lambda_\ell g_{k\ell}(t)
\]

with \(\Phi(x) = 0.5[(x/\sqrt{x^2 + 1}) + 1] \)

- Gene regulation and synthesis/Diffusion/Decay

- \(\theta = ((R_\ell, m_\ell, h_\ell, D_\ell, \lambda_\ell)_{1 \leq \ell \leq N}, (W_{\ell\ell'})_{1 \leq \ell, \ell' \leq N}) \)

Mjolsness et al., 1991, Jaeger et al., 2004
Summary and Perspectives

Summary

- Gene regulatory networks modelled with ODE’s
- Statistical model for data corrupted by two sources of noise in state variable and time observation
- Inference of a parameter of ODE’s by MLE
- Asymptotic properties and ongoing work to apply the MLE procedure to data

Perspectives

- Remove the assumption of Gaussian errors
- Extend the approach to Partial Differential Equations
- Account for differences in shape between organisms
Bibliography

Acknowledgements

▷ Joke Blom, CWI Amsterdam

▷ Richard Gill, University of Leiden and EURANDOM

▷ Jaap Kaandorp, University of Amsterdam

▷ Members of the Reinitz Fly Lab, Stony Brook University, New York