Nonlinear mappings for generative kernels on latent variable models

A. Carli1, M. Bicego1,2, S. Baldo1, V. Murino1,2

1 University of Verona (Italy)
2 Istituto Italiano di Tecnologia (Italy)

S+SSPR SIMBAD special session: 21st August 2010
Summary

- The starting point: generative kernels
 - the generative embedding point of view
- The normalization problem
- Nonlinear normalization
- Results and findings
- Conclusions and open issues
Two approaches to classification

Generative models:
- better description capabilities
- ability to deal also with non vectorial (structural) representations (e.g. sequences)

Discriminative methods:
- typically have better classification performances
Generative kernels

- Generative kernels are hybrid methods able to merge
 - description capabilities of generative models
 - classification skills of discriminative methods
Generative kernels

- IDEA: Exploit a generative model to compute a kernel between objects (to be used in a discriminative scenario)

Two objects

Generative model λ

Kernel

$K_\lambda(O_1, O_2)$
Generative kernels

- Main feature:
 - very suitable for structured (non vectorial) objects (sequences, graphs, sets, strings, ...)

Examples: Fisher Kernel, Marginalized Kernel, KL kernel, Product Probability kernel
An alternative point of view

Objects (e.g. sequences)

Mapping

Generative model

Feature space (generative embedding or Score space)

Generative embedding

Similarity

Generative Kernel
An alternative point of view

- Many generative kernels may be seen in this view

Example: the Fisher Kernel

- The generative embedding space (called Fisher Score space)

\[
\phi(O) = \nabla_\theta \log P(O | \theta)
\]

- The similarity \(K(O_1, O_2) = \phi(O_1) \cdot \phi(O_2) \)
Generative kernels

- Different kernels may be defined depending on:
 - different generative models
 - different mappings
 - different similarities in the feature space

- HERE:
 - HMM-based generative kernels
 - the kernel is the inner product in the obtained generative embedding space
Observation: it has been shown in different cases that a proper normalization of the obtained generative embedding space is crucial

- Fisher Score space – Smith Gales NIPS02
- Marginalized Kernel – Tsuda et al Bioinformatics 2002
- Other evidences: Generative embedding spaces proposed in Bicego, Pekalska, Tax, Duin, PR 09
The normalization problem (2)

- In all these cases the applied normalization is \textit{linear}

 - e.g. standardization
 \[
 x_{i}^{j_{i,new}} = \frac{x_{i}^{j} - \mu_{j}}{\sigma_{j}}
 \]

 - every direction \(j \) of the space has zero mean and unit variance

- QUESTION: may a \textit{nonlinear} normalization be useful?
The proposed approach

- Here we try to answer to the previous question.

- **Nonlinear normalization**: apply to every component of the feature vector in the generative embedding space a *nonlinear* mapping (like powering, logarithm, logistic)

- We applied different nonlinear mappings to different HMM-based generative kernels in three applications
Details

- \(\mathbf{O} \) is a generic object (e.g. a sequence), \(\lambda \) is the generative model (or a set of)
- Generative embedding:

\[
\mathbf{O} \rightarrow [g_1(\mathbf{O}, \lambda), g_2(\mathbf{O}, \lambda), \ldots, g_N(\mathbf{O}, \lambda)]^T
\]

we assume \(g_i(\mathbf{O}, \lambda) > 0 \)

- Nonlinear normalization: we applied a non linear function \(f \) to every direction of the space

\[
\mathbf{O} \rightarrow [f(g_1(\mathbf{O}, \lambda)), f(g_2(\mathbf{O}, \lambda)), \ldots, f(g_N(\mathbf{O}, \lambda))]^T
\]
Details: the nonlinear mappings

- Powering function

\[f(g_i(O, \lambda)) = g_i(O, \lambda)^\rho \quad \rho > 0 \]

- Natural logarithm (no parameters)

\[f(g_i(O, \lambda)) = \log(1 + g_i(O, \lambda)) \]

- Logistic function

\[f(g_i(O, \lambda)) = \tanh(\rho \ g_i(O, \lambda)) \quad 0 < \rho < 1 \]
The experimental evaluation

- We tested the different nonlinear mappings with different embeddings and different applications

DETAILS
Generative model: Hidden Markov Model
 - fully ergodic, trained with Baum Welch
 - number of states is application dependent
The experimental evaluation

- Studied generative embeddings:
 - Fisher Score [Jaakkola et al., 1999]:
 \[g_i(O, \lambda) \] is the derivative of the log likelihood of the HMM w.r.t. to a given parameter, evaluated in \(O \)
 - State Space [Bicego et al., 2009]:
 \[g_i(O, \lambda) \] is the averaged frequency of passing through a certain state of the HMM while observing \(O \)
The experimental evaluation

- Marginalized Kernel Space [Tsuda et al., 2002]: very similar to the State Space

- Transition Space [Bicego et al., 2009]:
 \[g_i(O, \lambda) \]
 is the averaged frequency of passing through a given transition of the HMM while observing \(O \)

(All details in the S+SSPR10 paper)
The experimental evaluation

- Applications:
 - 2D shape recognition using the Chicken Pieces Database
 - gesture recognition using the AUSLAN dataset (sign language)

Shapes are described with chain codes (discrete HMM) and curvature (continuous Gaussian HMM)
Experimental evaluation

- Classification is performed with SVM
 - the kernel: the inner product in the new space
 - C optimized with cross validation
- Accuracies computed with K-fold cross validation (results averaged over 20 repetitions)
- Different values for the parameters of nonlinear mappings (only best results are reported)
Findings: when it works (1)

Observations from the results

1. It works for generative embeddings in which each direction summarizes information related to a single HMM state
 - YES: State Space, Marginalized kernel space
 - NO: Fisher Score Space, Transitions space
Findings: when it works (2)

2. It works when the nonlinear mapping has two characteristics:

- concave, with vanishing derivative at $+\infty$
- asymptotically nonexpansive: it reduces distances, provided that $g_i(\mathbf{O},\lambda)$ are large enough

NOTE: powering with $\rho>1$ does not work
How it works

Classification accuracies for State Space embedding

<table>
<thead>
<tr>
<th>Normalization</th>
<th>2D shape recognition (chain codes)</th>
<th>2D shape recognition (curvature)</th>
<th>Gesture classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.751</td>
<td>0.736</td>
<td>0.798</td>
</tr>
<tr>
<td>powering ($\rho<1$)</td>
<td>0.813</td>
<td>0.807</td>
<td>0.904</td>
</tr>
<tr>
<td>logarithm</td>
<td>0.753</td>
<td>0.755</td>
<td>0.838</td>
</tr>
<tr>
<td>logistic</td>
<td>0.770</td>
<td>0.780</td>
<td>0.826</td>
</tr>
</tbody>
</table>

The standard errors of the mean are all less than 0.007
Classification accuracies for Marginalized kernel embedding

<table>
<thead>
<tr>
<th>Normalization</th>
<th>2D shape recognition (chain codes)</th>
<th>2D shape recognition (curvature)</th>
<th>Gesture classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.775</td>
<td>0.767</td>
<td>0.533</td>
</tr>
<tr>
<td>powering (ρ<1)</td>
<td>0.855</td>
<td>0.780</td>
<td>0.932</td>
</tr>
<tr>
<td>logarithm</td>
<td>0.829</td>
<td>0.776</td>
<td>0.901</td>
</tr>
<tr>
<td>logistic</td>
<td>0.817</td>
<td>0.776</td>
<td>0.856</td>
</tr>
</tbody>
</table>

The standard errors of the mean are all less than 0.007

In some cases the improvements are impressive.
Best nonlinear mapping

- The best is the powering operation (with $0<\rho<1$)

 it reduces the contribution of larger components

 and

 it raises the contribution of smaller components

The effect is to re-equilibrate the contributions of each state of the HMM
Conclusions & future work

- Non linear normalization of generative embedding spaces may be very useful, but
 - not in all cases
 - not for all nonlinear mappings

- Why it works is still an issue
 - A direction we are investigating
 - effect of de-diagonalizing the kernel matrix (as in Schölkopf et al., ECML 2002)

- Choice of parameters is of course crucial
THANK YOU!

QUESTIONS?