Reaction and Diffusion on Fractal Sets

D. S. Broomhead and Caroline Riley
The School of Mathematics,
The University of Manchester.
When modelling chemical processes in cells, it is usual to build models which:

- are based on mass action kinetics
- have no spatial structure beyond simple compartmentalisation

Is the mass action assumption appropriate?

- the cytoplasm is a very crowded place (5 – 40% of volume is occupied by macromolecules)
- reactive species can often be extremely dilute

Experimental techniques are beginning to resolve spatial detail—perhaps dynamically in the not too distant future

What can we do about modelling spatio-temporal dynamics within cells?
Molecular Crowding

- Molecular crowding has a number of well-established thermodynamic consequences

- Here we will be interested in dynamical consequences:

- The available volume through which a given molecule can move depends on its size and shape

- Molecules can be effectively confined to low-dimensional spaces
 - For example: 1D pores
 - Highly ramified (fractal) spaces

- Can we model this mathematically? What issues need to be addressed?

Medalia et al Science 298 (2002) 1209

Exciton Annihilation Experiment

- Experiment used random naphthalene crystals where $\sim 8\%$ mole fraction was undeuterated.

- Triplet excitons mobile in the undeuterated component which forms a percolating cluster within the crystal.

- Triplets can annihilate when two collide—naïve mass action kinetics implies the rate of loss of triplet is proportional to the square of the triplet concentration.

- Experimentally, however, this ‘constant’ decays in time as a power law $\kappa(t) \sim t^{-h}$.

- The experimental h fits the theoretical value $1 - d_s/2$, where d_s is the spectral dimension of the fractal.

Rate Constants

- Smoluchowski’s theory (1917) is based on computing a diffusive flux of reactants onto one another

- The observed rate depends on both the intrinsic rate \((k) \) and the relative diffusion \((D) \) (here \(R \) is the distance of closest approach of the molecules)

\[
\kappa = \frac{4\pi DRk}{4\pi DR + k}
\]

- It is assumed that chemical concentrations are continuous functions of space

- The derivation fails in less than 3 dimensions

- We shall assume a reaction-diffusion model of the dynamics.
 - The rates will be assumed to be intrinsic
 - We will work on a fractal domain—the Sierpinski Gasket
 - We are interested in models which give insight into the role of the complex spatial structures that arise in cells
The Sierpinski Gasket

- An uncountable, compact, self-similar subset of \mathbb{R}^2
- Hausdorff dimension $d_H = \log 3 / \log 2$ and spectral dimension $d_s = \log 9 / \log 5$
- Approximate with a sequence of graphs (V_n, E_n) whose vertices become dense in the set
- $V_{n+1} = f_0(V_n) \cup f_1(V_n) \cup f_2(V_n)$ where $f_i = (x - p_i)/2 + p_i$ and the p_i are three fixed non-colinear points in the plane
Calculus on the Sierpinski Gasket

- The Laplacian can be constructed as a renormalised sequence of graph Laplacians
- A lot is known rigourously about this operator
- Its spectrum can be found by a decimation process
- A normal derivative (∂_n) can also be defined and then a Gauss-Green theorem can be proved. From which it follows that:

$$\int_{SG} \nabla^2 A \, d\mu = \sum_{V_0} \partial_n A$$

- Green’s functions can be constructed explicitly
Numerics on the Gasket: symmetric case

- Can we model the exciton experiment using this?
- We solve the following reaction-diffusion equation (with $k = 0.1$ and $D = 0.01$) on the Sierpinski Gasket:

\[
\frac{\partial A}{\partial t} = D \nabla^2 A - kA^2
\]

- A plot of $\kappa(t) = \frac{d\bar{A}/dt}{\bar{A}^2}$ (\bar{A} is the uniform average of A) does not show a power law—it decays to k.

![Graph showing the decay of \(\kappa(t)\)]
Relating the Rate Coefficients

Consider this case: \(A + A \rightarrow \text{product} \), and write averages:

\[
\bar{A} = \int_{\text{SG}} A d\mu
\]

We have two expressions:

\[
\frac{d\bar{A}}{dt} = -\kappa(t)\bar{A}^2
\]

and, using the reaction-diffusion form (with Neumann bcs)

\[
\frac{\partial A}{\partial t} = D \nabla^2 A - kA^2 \quad \longrightarrow \quad \frac{d\bar{A}}{dt} = -k\bar{A}^2
\]

Equating the two gives:

\[
\kappa(t) = \frac{\bar{A}^2}{\bar{A}^2} k
\]
Relating the Rate Coefficients

Given the expression:

\[\kappa(t) = \frac{\overline{A^2}}{\overline{A}^2} k \]

We have the inequality (with equality iff \(A \) is uniform)

\[\overline{A^2} \geq \overline{A}^2 \Rightarrow \kappa(t) \geq k \]

- If, initially, the concentration of \(A \) is not uniform, the initial rate will exceed the intrinsic rate.
- The intrinsic rate is a lower bound on the observed rate—this excludes the possibility that \(\kappa(t) \sim t^{-h} \).
- We have not used fractal geometry explicitly here: only that the Gauss-Green formula holds for a suitably defined Laplacian and normal derivative on the Sierpinski Gasket.
- The fact that power law behaviour is observed in experiments and in lattice-gas simulations suggests that the discreteness of the reacting entities might be the issue.
Rate Coefficients—non-symmetric case

Now we consider the non-symmetric case:

\[A + B \rightarrow \text{product} \]

As before, writing averages with an overline, and using an analogous argument, we get

\[\kappa(t) = \frac{\overline{AB}}{\overline{A} \overline{B}} \, k \]

- The quantity \(\overline{AB} \) measures the correlation between the spatial distribution of \(A \) and \(B \)
- If \(A \) and \(B \) are uncorrelated, \(\overline{AB} = \overline{A} \overline{B} \) and hence \(\kappa = k \)
- Initially, \(A \) and \(B \) could well be uncorrelated \(\Rightarrow \kappa(0) = k \).
- If the kinetics dominate, \(A \) and \(B \) become anticorrelated:

\[\overline{AB} < \overline{A} \overline{B} \, \Rightarrow \, \kappa(t) < k \]
Numerics on the Gasket: non-symmetric case

We solve the system of PDEs (with $k = 0.1$ and $D = 0.01$):

$$\frac{\partial A}{\partial t} = D \nabla^2 A - kAB$$

$$\frac{\partial B}{\partial t} = D \nabla^2 B - kAB$$
Remarks About the Numerics

- This anti-correlation effect (segregation) was predicted by Zeldovich et al in 1978
- It requires the chemistry to act faster than the diffusion and is strongly dependent on dimension—not observed in the steady state in \mathbb{R}^2 or \mathbb{R}^3 (Kopelman)
- Can be seen in lower dimensions—demonstrated using a lattice gas on the Sierpinski Gasket by Kopelman (1989)
- Behaviour entirely consistent with analysis given earlier
- Still not a power law, nor Zipf-Mandlebrot (Schnell and Turner: lattice gas model of Michaelis-Mentin)

$$\kappa(t) = k\tau / (\tau + t)^h$$

- Our numerics suggest $\kappa(t) \to t$ at large t
Concluding Remarks

- Continuous dynamics on fractal sets appears to differ in a qualitative way from dynamics based on discrete entities.
- Lattice gas type modelling and reaction-diffusion seem complimentary
- We can define and analyse reaction-diffusion models in a class of fractal sets.
 - The Sierpinski Gasket
 - Analogous sets based on a tetrahedron... generally on an \(n \)-simplex.
 - Post-critically finite sets
- The behaviour is dependent on the topology of the set rather than a particular embedding and so continuous maps of these sets could be used to model spatial detail.
- Reaction-diffusion models are not dependent on the origin of time, unlike models with time-dependent rate coefficients