DivRank: Interplay of Prestige and Diversity in Information Networks

Qiaozhu Mei1,2, Jian Guo3, Dragomir Radev1,2

1School of Information
2Computer Science and Engineering
3Department of Statistics
University of Michigan
Diversity in Ranking

Ranking papers, people, web pages, movies, restaurants...

Web search; ads; recommender systems ...

Network based ranking – centrality/prestige
Ranking by Random Walks

$p_{T+1}(v) = \sum_{(u,v)\in E} p(u,v)p_T(u)$

Ranking using stationary distribution
E.g., PageRank
Reinforcements in Random Walks

- Random walks are not random - rich gets richer;
 - e.g., civilization/immigration – big cities attract larger population;
 - Tourism – busy restaurants attract more visitors;

Source - http://www.resettlementagency.co.uk/modern-world-migration/
Vertex-Reinforced Random Walk
(Pemantle 92)

Reinforced random walk: transition probability is reinforced by the weight (number of visits) of the target state

\[p_T(u, v) \propto N_T(v) \]

Transition probabilities change over time

\[p_{T+1}(v) = \sum_{(u,v) \in E} p_T(u,v)p_T(u) \]
DivRank

• A smoothed version of Vertex-reinforced Random Walk

\[p_T(u, v) = (1 - \lambda)p^*(v) + \lambda \cdot \frac{p_0(u, v)N_T(v)}{D_T(u)} \]

Random jump, could be personalized

“organic” transition probability

• Adding self-links;
• Efficient approximations: use \(E[N_T(v)] \) to approximate \(N_T(v) \)

Cumulative DivRank:

\[E[N_T(v)] \propto \sum_{t=0}^{T} p_t(v) \]

Pointwise DivRank:

\[E[N_T(v)] \propto p_T(v) \]
Experiments

• Three applications
 – Ranking movie actors (in co-star network)
 – Ranking authors/papers (in author/paper-citation network)
 – Text summarization (ranking sentences)

• Evaluation metrics:
 – diversity: density of subgraph; country coverage (actors)
 – quality: h-index (authors); # citation (papers);
 – quality + diversity: movie coverage (actors); impact coverage (papers); ROUGE (text summarization)
Results

- **Divrank >> Grasshopper/MMR >> Pagerank**

Paper citation:

Density Impact coverage

Text Summarization:

<table>
<thead>
<tr>
<th>Method</th>
<th>Training R-1</th>
<th>95% C.I.</th>
<th>Testing R-1</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>0.359</td>
<td>[0.337, 0.381]</td>
<td>0.343</td>
<td>[0.318, 0.366]</td>
</tr>
<tr>
<td>PPR</td>
<td>0.378</td>
<td>[0.356, 0.398]</td>
<td>0.368</td>
<td>[0.350, 0.385]</td>
</tr>
<tr>
<td>MMR</td>
<td>0.363</td>
<td>[0.347, 0.379]</td>
<td>0.343</td>
<td>[0.318, 0.366]</td>
</tr>
<tr>
<td>GH</td>
<td>0.380</td>
<td>[0.360, 0.397]</td>
<td>0.356</td>
<td>[0.333, 0.378]</td>
</tr>
<tr>
<td>DR</td>
<td>0.387</td>
<td>[0.367, 0.404]</td>
<td>0.379</td>
<td>[0.366, 0.394]</td>
</tr>
<tr>
<td>CDR</td>
<td>0.384</td>
<td>[0.365, 0.401]</td>
<td>0.362</td>
<td>[0.342, 0.378]</td>
</tr>
</tbody>
</table>
Why Does it Work?

- Rich gets richer
 - Related to *Polya’s urn* and *preferential attachment*
- Compete for resource in neighborhood
 - Prestigious node absorbs weights of its neighbors
- An optimization explanation
Summary

• DivRank – Prestige/Centrality + Diversity
• Mathematical foundation: vertex-reinforced random walk
• Connections:
 – Polya’s Urn
 – Preferential Attachments
 – Word burstiness
• Why it works?
 – Rich-gets-richer
 – Local resource competition
• Future work: Query dependent DivRank;
Thanks!