Ensemble Pruning via Individual Contribution Ordering

Zhenyu Lu+, Xindong Wu+, Xingquan Zhu* and Josh Bongard+
+University of Vermont
*University of Technology, Sydney
Are all members in an ensemble necessary?\[1\]

[1]: Margineantu et al., 1997
• Many could be better than all[2]

• Orientation Ordering[3] (OO)

[2]: Zhou et al., 2002
[3]: Martínez et al., 2006
• Ensemble Pruning via Individual Contribution Ordering (EPIC)

Autos

![Graph showing the error rate over the number of classifiers for different methods: bagging, OO, and EPIC. The graph illustrates how EPIC reduces error more effectively compared to the other methods.]
Our Approach

• As for any ensemble method, appropriately handling the accuracy/diversity tradeoff is crucial
Heuristic of Individual Contribution

- Correct but in the minority
- Correct and in the majority
- Incorrect and in the minority
- Incorrect but in the majority

Positive contribution

Negative contribution
Ensemble Pruning via Individual Contribution ordering: EPIC

1) Train an ensemble of classifiers

2) Calculate individual contribution of each classifier on a selection set

3) Reorder individual classifiers by decreasing contribution

4) Output the first x percent individual classifiers for prediction; x is given
Results – autos

• One data set (autos)
• 300 independent runs, ensemble size 200
• Base learner: J48 decision tree
• Ensemble method: bagging
Results – summary

• 26 data set from UCI
• On each set, 300 independent runs, ensemble size 200
• Base learner: J48 decision tree
• Ensemble method: bagging

• EPIC outperforms both bagging and OO on two different settings
Conclusions and Future work

• Contribution in decreasing order: correct but in the minority, correct and in the majority, incorrect and in the minority, incorrect but in the majority
• EPIC is a single-parameter, fast (pruning time $O(m \log m)$) and effective (outperforms OO) pruning method
• Future work
 – Make EPIC parameterless
 – Test and generalize EPIC with different base classifier types, different ensemble methods and heterogeneous ensembles
 – Design better individual contribution measure