Generative Models for Ticket Resolution in Expert Networks

Gengxin Miao, Louise Moser, Xifeng Yan
University of California, Santa Barbara

Shu Tao
IBM T.J. Watson

Yi Chen
Arizona State University

Nikos Anerousis
IBM T.J. Watson
The Life of a Ticket

DB2 logon failure

Goal: Less transfer steps to the resolver

Networking group
- Server network connection works fine
- Client network connection works fine

User management group
- Checked Username password mismatching
 - Sam

Web server group
- Web server is configured successfully
 - Jack

- Server and client software not compatible. Problem solved.
 - Jill

Bob
Alice
Application Scenarios

Question answering in a social network

Customer service

Collaborator finding in the academic world

Business referral
Problem Definition

A set of tickets reported to the expert network
\[\mathcal{T} = \{t_1, t_2, \ldots, t_m\} \]

An interconnected network of experts
\[\mathcal{G} = \{g_1, g_2, \ldots, g_L\} \]

Word description of tickets
\[\mathcal{W} = \{w_1, w_2, \ldots, w_n\} \]

Routing sequence of tickets
\[R(t) = g_{\text{init}}(t) \rightarrow \ldots \rightarrow g_{\text{res}}(t) \]

Goal: Minimize the average length of routing sequences
\[S = \frac{\sum_{i=1}^{m} \left| R(t_i) \right|}{m} \]
Outline

Generative Models
- Resolution Model
- Transfer Model
- Optimized Network Model

Routing Algorithms
- Ranked Resolver
- Greedy Transfer
- Holistic Routing

Experimental Results
Resolution Model (RM)

- Each expert has an expertise profile
 - An expert is likely to be able to resolve tickets similar to what he/she has resolved previously

\[P_{gi} = [P(w_1|g_i), P(w_2|g_i), \ldots, P(w_n|g_i)]^T \]
Transfer Model (TM)

- Expertise awareness between experts
 - An expert transfers similar tickets to another expert

![Diagram showing tickets transferred from expert B to expert F]

\[P_{e_{ij}} = [P(w_1|e_{ij}), P(w_2|e_{ij}), ..., P(w_n|e_{ij})]^T \]
Optimized Network Model (ONM)

- Transfer profiles optimized for the entire expert network

\[
\mathcal{L} = \prod_{t \in T} P(R(t)|t)
\]

\[
P(R(t)|t) = P(g_1|t)P(g_2|t, g_1)P(g_3|t, g_2)P(g_3|t, g_3)
\]

\[
P(g_j|t, g_i) = \frac{P(t|e_{ij})P(g_j|g_i)}{Z(t, g_i)}
\]

\[
= \frac{\left(\prod_{w_k \in t} P(w_k|e_{ij}) f(w_k, t) \right) P(g_j|g_i)}{Z(t, g_i)}
\]

\[
Z(t, g_i) = \sum_{g_j \in g} P(t|e_{ij}) P(g_j|g_i)
\]
Optimized Network Model (ONM)

\[
\log \mathcal{L} \geq \sum_{e_{ij}} \sum_{t \in T_{ij}} \left(\log(P(t|e_{ij})) + \log(P(g_j|g_i)) \right)
- \sum_{g_i \in G} \sum_{t' \in T_i} \sum_{w_k \in t'} \log \left(\sum_{g_{i\ell} \in G} P(g_{i\ell}|g_i) \times P(w_k|e_{i\ell}) \right)
\]

\[
\nabla [\log \mathcal{L}] = \frac{\partial [\log \mathcal{L}]}{\partial P(w_k|e_{ij})} \frac{\sum_{t \in T_{ij}} n(w_k, t)}{P(w_k|e_{ij})} \frac{P(g_j|g_i) \times \sum_{t' \in T_i} n(w_k, t')}{\sum_{g_{i\ell} \in G} P(g_{i\ell}|g_i) \times P(w_k|e_{i\ell})}
\]

TM model as initial values
Use steepest descent method until convergence
Routing Algorithms

- Ranked resolver
- Greedy transfer
- Holistic routing
Ranked Resolver

- Match the ticket content with the expertise profiles

\[
P(g_i | t) = \frac{P(g_i) P(t|g_i)}{P(t)} \propto P(g_i) \prod_{w_k \in t} P(w_k | g_i) f(w_k, t)
\]
Greedy Transfer

- Match the ticket with the transfer profiles

\[\text{Rank}\left(g_j\right) \propto \max_{g_i \in R(t)} P(g_j|t, g_i) \]

\[P(g_j|t, g_i) = \frac{P(g_j|g_i) \prod_{w_k \in t} P(w_k|e_{ij}) f(w_k,t)}{\sum_{g_l \in g} P(g_l|g_i) \prod_{w_k \in t} P(w_k|e_{il}) f(w_k,t)} \]
Holistic Routing

All possibilities are explored
Experimental Results

- AIX ticket data
 - 18,426 tickets
 - 16,065 words
 - 847 expert groups

- Evaluation
 - 75% training data
 - 25% testing data
 - Data items are divided randomly
Experimental Results

| Generative Models | Routing Algorithms | Experiment |

Problem Category AIX

- VMS
- RM
- TM
- ONM

MSTR

Number of steps in log

Generative models for ticket resolution in expert networks
Conclusion

- We presented generative models to characterize the ticket resolution process
 - Historical routing sequence and ticket content are integrated together into generative models
 - Both expertise profiles and transfer profiles are captured
 - Model parameters are optimized either locally or globally

- We investigated ticket routing algorithms
 - Experiments show that the algorithms are efficient

- Other applications of the generative models
 - Expertise awareness assessment
 - Network organizational structure investigation
Thanks! Questions?